Math 181 Miniproject 4: Linear Approximation and Calculus.md --- Math 181 Miniproject 4: Linear Approximation and Calculus === **Overview:** In this miniproject you will put the idea of the *local linearization* of a function to build linear approximations to complex functions and then make *interpolations* and *extrapolations* using them. **Prerequisites:** Sections 1.8 in *Active Calculus*, which focuses on this topic. **Completion of Miniprojects 1 and 2 is recommended before doing this miniproject**. --- :::info 1\. A potato is placed in an oven, and the potato's temperature $F$ (in degrees Fahrenheit) at various points in time is taken and recorded in the following table. The time $t$ is measured in minutes. | $t$ | 0 | 15 | 30 | 45 | 60 | 75 | 90 | |----- |---- |------- |----- |----- |------- |------- |------- | | $F$ | 70 | 180.5 | 251 | 296 | 324.5 | 342.8 | 354.5 | (a) Use a central difference to estimate $F'(75)$. Use this estimate as needed in subsequent questions in this problem. ::: (a) $f'\left(75\right)=\frac{f\left(90\right)-f\left(60\right)}{90-60}$ $f'\left(75\right)=\frac{\left(354.5\right)-\left(324.5\right)}{30}$ $=1 f/min$ :::info (b) Find the local linearization $y = L(t)$ to the function $y = F(t)$ at the point where $a = 75$. ::: (b) $L\left(t\right)=f\left(a\right)+f'\left(a\right)\left(x-a\right)$ $L\left(75\right)=f\left(75\right)+f'\left(75\right)\left(x-a\right)$ $L\left(75\right)=\ 342.8+1\left(x-75\right)$ :::info (c\) Determine an estimate for $F(72)$ by employing the local linearization. Terminology: This estimate is called an *interpolation* because we are estimating a value that lies within a data set, between two known data points. ::: (c\) $f\left(72\right)\sim L\left(72\right)$ $L\left(72\right)=342.8+1\left(72-75\right)$ $L\left(72\right)=342.8+1\left(-3\right)$ $=339.8 F$ :::info (d) Do you think your estimate in (c) is too large, too small, or exactly right? Why? ::: (d) The average rate of change for $f(72)$ is the rate of change, it is bigger than the estimate central difference so the estimate in c, is to small. $AV\left[60,75\right]=\frac{f\left(75\right)-f\left(60\right)}{75-60}$ $=\frac{342.5-324.5}{15}$ $=1.22$ :::info (e) Use your local linearization to estimate $F(100)$. Terminology: This estimate is called an *extrapolation* because we are estimating a value that lies outside the range of values of a data set. ::: (e)$f\left(100\right)\sim L\left(t\right)$ $L\left(100\right)=342.8+1\left(100-75\right)$ $L\left(100\right)=342.8+1\left(25\right)$ $=367.8 F$ :::info (f) Do you think your estimate in (e) is too large, too small, or exactly right? Why? ::: (f) Based off from the average rate of change from $f(72)$, the same pattern will occur for $f(100)$, so the estimate would still be too small. :::info (g) Plot both $F$ and $L$ and comment on how or when the line $L(t)$ is a good approximation of $F(t)$. ::: (g ![](https://i.imgur.com/XYdoLdl.png) The line for $L(t)$ is a good approximation for $f(75)$ but not for $f(72)$ and $f(100)$ because its an underestimate. --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.