Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> </div></div> </div></div> ----- <div><img class="left"/><div class="alert gray"> Hello, Im a calculus student and I've been having trouble understanding the concept and importance for linear approximation. </div></div> </div></div> <div><div class="alert blue Hello, the importance for why linear approximation is used is when the function of $f(x)$ is to complicated to solve to find the value of an exact point. By solving the linear approximation you are able to find the tangent line, a much easier function to solve for. </div><img class="right"/></div> </div></div> <div><img class="left"/><div class="alert gray"> So, how is linear approximation used? </div></div> <div><div class="alert blue"> Linear approximation is a method of estimating the value of funciton, $f(x)$, near a point; $x=a$, using this formula: $$L(x)=f(a)+f'(x)(x-a)$$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Can we work through an example? </div></div> <div><div class="alert blue"> Yes, so for instance a question would be asked like: Use the derivative formula $f'(x)= 4x^3$ to find the linear approximation of $f(x)=x^4$ at $x=2$. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Okay, so I know the formula is $L(x)=f(a)+f'(x)(x-a)$. So since $f'(x)=4x^3$ and $f(x)=x^4$ and $a=2$. It would be: $L(x)=(2)^4+ 4(2)^3(x-a)$ $=16+32(x-2)$ </div></div> <div><div class="alert blue"> Correct, $15+32(x-2)$ is the tangent line that we will use to eastimate any value instead of using the function for $f(x)$. </div><img class="right"/></div> <div><div class="alert blue"> So now use the linear approximation to estimate the value of $2.05^4$. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Okay, that is the part I'm having trouble with. Where do I plug in $2.05^4$ to estimate the value? </div></div> <div><div class="alert blue"> Okay, so we now have $15+32(x-2)$, which is easier to solve for than $f(x)$. $2.05^4=f(2.05)$ $\sim L\left(2.05\right)$ $L(2.05)=12+ 32+(2.05-2)$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh okay, so $2.05$ is the $x$ of $$L(x)=f(a)+f'(x)(x-a)$$ So,now that $L(2.05)=12+ 32+(2.05-2)$ $=16 +32(0.05)$ $=16+1.6$ $=17.6$ The estimate of the value $2.05^2$ is 17.6 </div></div> <div><div class="alert blue"> Correct! For exams I suggest making your own practice problems of all the concepts and explainging those problems to another person or going over them to yourself outloud. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Thank you! I will make my own cheat sheat and make up my own problems to study for the exam. </div></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.