Math 181 Miniproject 3: Texting Lesson.md
---
My lesson Topic
===
<style>
body {
background-color: #eeeeee;
}
h1 {
color: maroon;
margin-left: 40px;
}
.gray {
margin-left: 50px ;
margin-right: 29%;
font-weight: 500;
color: #000000;
background-color: #cccccc;
border-color: #aaaaaa;
}
.blue {
display: inline-block;
margin-left: 29% ;
margin-right: 0%;
width: -webkit-calc(70% - 50px);
width: -moz-calc(70% - 50px);
width: calc(70% - 50px);
font-weight: 500;
color: #fff;
border-color: #336699;
background-color: #337799;
}
.left {
content:url("https://i.imgur.com/rUsxo7j.png");
width:50px;
border-radius: 50%;
float:left;
}
.right{
content:url("https://i.imgur.com/5ALcyl3.png"); width:50px;
border-radius: 50%;
display: inline-block;
vertical-align:top;
}
</style>
<div id="container" style=" padding: 6px;
color: #fff;
border-color: #336699;
background-color: #337799;
display: flex;
justify-content: space-between;
margin-bottom:3px;">
<div>
<i class="fa fa-envelope fa-2x"></i>
</div>
<div>
<i class="fa fa-camera fa-2x"></i>
</div>
<div>
<i class="fa fa-comments fa-2x"></i>
</div>
<div>
<i class="fa fa-address-card fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-phone fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-list-ul fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-user-plus fa-2x" aria-hidden="true"></i>
</div>
</div>
</div></div>
</div></div>
-----
<div><img class="left"/><div class="alert gray">
Hello, Im a calculus student and I've been having trouble understanding the concept and importance for linear approximation.
</div></div>
</div></div>
<div><div class="alert blue
Hello, the importance for why linear approximation is used is when the function of $f(x)$ is to complicated to solve to find the value of an exact point. By solving the linear approximation you are able to find the tangent line, a much easier function to solve for.
</div><img class="right"/></div>
</div></div>
<div><img class="left"/><div class="alert gray">
So, how is linear approximation used?
</div></div>
<div><div class="alert blue">
Linear approximation is a method of estimating the value of funciton, $f(x)$, near a point; $x=a$, using this formula:
$$L(x)=f(a)+f'(x)(x-a)$$
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Can we work through an example?
</div></div>
<div><div class="alert blue">
Yes, so for instance a question would be asked like: Use the derivative formula $f'(x)= 4x^3$ to find the linear approximation of $f(x)=x^4$ at $x=2$.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Okay, so I know the formula is $L(x)=f(a)+f'(x)(x-a)$. So since $f'(x)=4x^3$ and $f(x)=x^4$ and $a=2$. It would be:
$L(x)=(2)^4+ 4(2)^3(x-a)$
$=16+32(x-2)$
</div></div>
<div><div class="alert blue">
Correct, $15+32(x-2)$ is the tangent line that we will use to eastimate any value instead of using the function for $f(x)$.
</div><img class="right"/></div>
<div><div class="alert blue">
So now use the linear approximation to estimate the value of $2.05^4$.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Okay, that is the part I'm having trouble with. Where do I plug in $2.05^4$ to estimate the value?
</div></div>
<div><div class="alert blue">
Okay, so we now have $15+32(x-2)$, which is easier to solve for than $f(x)$.
$2.05^4=f(2.05)$
$\sim L\left(2.05\right)$
$L(2.05)=12+ 32+(2.05-2)$
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Oh okay, so $2.05$ is the $x$ of $$L(x)=f(a)+f'(x)(x-a)$$
So,now that $L(2.05)=12+ 32+(2.05-2)$
$=16 +32(0.05)$
$=16+1.6$
$=17.6$
The estimate of the value $2.05^2$ is 17.6
</div></div>
<div><div class="alert blue">
Correct! For exams I suggest making your own practice problems of all the concepts and explainging those problems to another person or going over them to yourself outloud.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Thank you! I will make my own cheat sheat and make up my own problems to study for the exam.
</div></div>
---
To submit this assignment click on the Publish button . Then copy the url of the final document and submit it in Canvas.