###### tags: `Application Mathematics` # Fourier Transform ## Orthogonal function ### Orthogonal in discrete system * **inner product** $$(f_1(x), f_2(x)) = \Sigma_n f_1[n]\; f_2[n]$$ * **orthogonal** $$(f_1(x), f_2(x))=0$$ *** ### Orthogonal in continuous function * **inner product** $$(f_1(x), f_2(x)) = \int_a^b\; f_1(x)f_2^*(x)\; dx$$ $f_2^*(x)$ means the conjugation of $f_2(x)$ + properties 1. $(f_1, f_2) = (f_2, f_1)^*$ 2. $(kf_1, f_2) = k(f_1, f_2)$ 3. if and only if $f=\vec{0}$, $(f, f) = 0$ 4. $(f_1+f_2, g) = (f_1, g)+(f_2, g)$ * **Orthogonal function** if $$(f_1, f_2) = \int_a^b f_1(x) f_2^*(x)\;dx = 0$$ then $f_1, f_2$ is orthogonal to each other. + special case any even function and any odd function must be orthogonal to each other within $[-a, a]$ * **Orthogonal set** In $\phi_1(x), \phi_2(x), \phi_3(x), ..., \phi_n(x)$, if $(\phi_m(x), \phi_n(x))=0 \; (m!=n)$ in $[a, b]$ then the set of function is called **orthogonal set**. *** ### Orthonormal function * **square norm** $$||f(x)||^2 = (f(x), f^*(x)) = \int_a^b f(x)f^*(x)\; dx$$ * **norm** $$||f(x)|| = (f(x), f^*(x))^{1/2} = \sqrt{\int_a^b f(x)f^*(x)\; dx}$$ * **orthonormal** Considering a set of orthogonal function, and norm of each function included in it equals to 1, then the set of function is called **orthonormal set**. * **normalization** If wanna transfer the orthogonal set into orthonormal set, dividing norm of each element function in the set is the method. This process is called **normalization**. * **complete** This property can be examined piecewise. If any function within [a, b] can be represented by linear combination of a set of function, then the set of function is called **complete**. * **orthogonal series expension** Considering $\phi(x)$ is a set of complete and orthogonal function, then any function within the interval can be written in: $$f(x) = \Sigma_{n=0}^\infty \; c_n\; \phi_n(x)$$ this expression is called orthogonal series expension. * **Generalize fourier series** Considering $$\int_a^b f(x)\phi_n^*(x)\; dx = \Sigma_{m=0}^\infty c_m\int_a^b \phi_m(x)\phi_n^*(x)\; dx = c_n \int_a^b \phi_n(x)\phi_n^*(x) \; dx$$$$\Rightarrow c_n = \frac{\int_a^b f(x)\phi_n^*(x)\; dx}{\int_a^b \phi_n(x)\phi_n^*(x) \; dx}$$ If the $\phi(x)$ is orthonormal function, then: $$c_n = \int_a^b f(x)\phi_n^*(x)\; dx$$ Since that the norm of the orthomormal function is 1. *** ### Weighting function * **weighting function** Emphasize structure of features, making the importance of different value different. * **inner product** $$(f_1, f_2) = \int_a^b w(x)f_1(x)f_2(x)\; dx$$ all the properties need to time $w(x)$ *** ## Fourier Series ### Trigonomatric function Using $cos(\frac{n\pi}{p}x)$ and $sin(\frac{n\pi}{p}x)$ to form set of function. Based on the definition before, this set is orthogonal and complete. ### Fourier Series * **Definition** $$f(x) = \frac{a_0}{2}+\Sigma_{n=1}^\infty (a_ncos(\frac{n\pi}{p}x)+b_nsin(\frac{n\pi}{p}x))$$ $$a_n = \frac{1}{\pi}\int_{-p}^p f(x)cos(\frac{n\pi}{p}x)\; dx$$ $$b_n = \frac{1}{\pi}\int_{-p}^p f(x)sin(\frac{n\pi}{p}x)\; dx$$ * **Physical meaning** Transform the input signal into frquency analysis * **limitation** + if the input function is not continuous, it is not always true to establish Fourier series. There is a little bit fixing: $$f(a-)=y_1, f(a+)=y_2, \;f(a)\frac{y_1+y_2}{2}$$ + Fourier Series Expension the function that is procedured by Fourier series, the function will be forced to be periodic function with period $2\pi$. More advance method will be introduced later. ### Partial Sum The Fourier series is the sum of infinity sum. if $lim_{N\rightarrow \infty}\Sigma_{n=1}^N$, then the sum is approach Fourier series. *** ## Fourier Cosine and Sine Series ### Even and Odd function if $f(x)=f(-x)$, the function is called even function. if $f(x)=-f(-x)$, the function is called odd function. ### properties even function: e\ odd function : d * e*e=e * o*o=e * e$\pm$e=e * o$\pm$o=o ### Fourier cosine and sine series * **cosine series** $$f(x)=\frac{a_0}{2}+\Sigma_{n=1}^\infty a_ncos(\frac{n\pi}{p}x)$$ $$a_0 = \frac{2}{p}\int_0^pf(x)dx$$ $$a_n = \frac{2}{p}\int_0^pf(x)cos(\frac{n\pi}{p}x)\; dx$$ * **sine series** $$f(x)=\Sigma_{n=1}^\infty b_n sin(\frac{n\pi}{p}x)$$ $$b_n = \frac{2}{p}\int_0^p f(x)sin(\frac{n\pi}{p}x)$$ *** ## Application ### Half-range expansion Only knowing half of the behavior of function. Like: $f(x), \; 0<x<L$ if there are three ways to do expansion: * **cosine series** get an even function, substitute $p\rightarrow L$ * **sine series** get an odd function, substitute $p\rightarrow L$ * **Fourier series** get an periodic function ### paticular solution for a $n-degree$ ODE, if the forcing is a periodic function, then this method is useful. Step 1: transfer forcing function into Fourier series Step 2: use basic method to suppose particular solution Step 3: solve the ODE *** ## Fourier Integral ### Adventage Fourier series can only solve problem of periodic function, but many signal are not obvious enough to show their property as a periodic function. Therefore, if the function is not periodic, its period can be regarded as infinity. In this interpretation, Fourier integral can solve problems that Fourier series can't solve. ### Expression $$f(x) = \frac{1}{\pi}\int_0^{\infty} [A(\alpha)cos(\alpha x)+B(\alpha)sin(\alpha x)]\; d\alpha$$ in which: $$A(\alpha) = \int_{-\infty}^{\infty} f(x)cos(\alpha x)\; dx$$ $$B(\alpha) = \int_{-\infty}^{\infty} f(x)sin(\alpha x)\; dx$$ ### Fourier cosine & sine integral * **Fourier cosine integral** When the function is even or has its interval $[0, \infty)$, the function can use cosine integral to analysis. $$f(x) = \frac{2}{\pi}\int_{-\infty}^{\infty} A(\alpha)cos(\alpha x)\;d\alpha$$ $$A(\alpha) = \int_0^{\infty} f(x)cos(\alpha x)\; dx$$ * **Fourier sine integral** When the function is odd or has its interval $[0, \infty)$, the function can use sine integral to analysis. $$f(x) = \frac{2}{\pi}\int_{-\infty}^{\infty} B(\alpha)sin(\alpha x)\;d\alpha$$ $$A(\alpha) = \int_0^{\infty} f(x)sin(\alpha x)\; dx$$ ### Sufficient Condition of Fourier integral Consider a function $f$ has its fourier integral function: $$\int_{-\infty}^{\infty}A(\alpha) cos(\alpha x) \; dx$$ Since $A(\alpha) cos(\alpha x)\le |A(\alpha) cos(\alpha x)|\le |A(\alpha)|$, we can thus get: $$\int_{-\infty}^{\infty} A(\alpha) cos(\alpha x)\; d\alpha \le \int_{-\infty}^{\infty} |A(\alpha)|\; d\alpha$$ If the absolute integral converges, the Fourier integral of $f(x)$ exists. This condition is called absolute integralable, which is a sufficient condition of Fourier integral. ### Partial integral If only wanna consider specific realm of phenomenon, partial integral can help us to do analysis. Its form is transfering $\infty$ to the boundary acquired. Aside from this, it is almost the same as Fourier integral. ### Complex Form of Fourier Integral Main expression looks like below: $$f(x) = \frac{1}{\pi}\int_{-\infty}^{\infty}C(\alpha)e^{-j\alpha x} \; d\alpha$$ in which: $$C(\alpha) = \int_{-\infty}^{\infty}f(x)e^{j\alpha x} \; dx$$ <font color=#00f> <pf.> By the definition of Fourier integral: $$f(x) = \frac{1}{\pi}\int_{0}^{\infty}(A(\alpha)cos(\alpha x)+B(\alpha)sin(\alpha x))\; d\alpha$$ $$\Rightarrow f(x)=\frac{1}{\pi}\int_0^{\infty}\int_{-\infty}^{\infty}f(t)[cos(\alpha t)cos(\alpha x)+sin(\alpha t)sin(\alpha x)]\;dt\; d\alpha$$ $$\Rightarrow f(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t)cos(\alpha(t-x))\;dt\; d\alpha$$ $$\because \int_{-\infty}^{\infty}f(t)sin(\alpha(t-x))\; d\alpha = 0$$ $$\therefore f(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t)[cos(\alpha(t-x))+jsin(\alpha(t-x))]\;dt\; d\alpha$$ $$f(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t)e^{j\alpha (t-x)}\;dt\; d\alpha$$ $$f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} [\int_{-\infty}^{\infty}f(t)e^{j\alpha t}\;dt]e^{-j\alpha x}\; d\alpha$$ </font> *** ## Fourier transform Complex form is fourier transform. ### Expression $$\hat f(\xi) = \int_{-\infty}^{\infty} f(x)e^{j\xi x} \; dx$$ in which $\xi$ is frquency. ### Definition * **Fourier transform** $$\hat f(\xi) = \int_{-\infty}^{\infty} f(x)e^{j\xi x} \; dx$$ * **inverse Fourier transform** $$f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \hat f(\xi)e^{-j\xi x}\; d\xi$$ * **Fourier sine transform** $$\hat f_s(\xi) = \int_{0}^{\infty} f(x)sin(\xi x) \; dx$$ * **inverse Fourier sine transform** $$f(x) = \frac{2}{\pi}\int_{0}^{\infty} \hat f(\xi)sin(\xi x)\; d\xi$$ * **Fourier cosine transform** $$\hat f_c(\xi) = \int_0^{\infty} f(x)cos(\xi x)\; dx$$ * **inverse Fourier cosine transform** $$f(x) = \frac{2}{\pi}\int_{0}^{\infty} \hat f_c(\xi)cos(\xi x)\; d\xi$$