# 機率期中考考古 2019 ==TODO: 11== ![](https://i.imgur.com/bsz4T7p.png) a. Shou-de Lin b. Simpon's Paradox is to said that it is possible for a batter A having higher batting average than batter B at every season in his career and yet B could have a better overall batting average at the end of their careers. 只要在打擊率較高的那一年打較多場,之後的平均就會較高 ->學分修比較多那個學期gpa要比較高(可是怎麼辦我這學期修超級多@@) c. ==N(0, 1) = ChiSquare(1)?==: 可看筆記:) (不確定) With sets that have a relatively large mean, they are both approximates of the Binomal Distributuon. The normal distribution can actually be used to approximate a poisson distribution if you set their means and variances the same. [網路上的資料](https://www.quora.com/What-is-the-relation-between-normal-distribution-and-poisson-distribution) 我自己的理解是因為Poisson Distribution是固定單位時間內偶發事件的機率分佈,所以如果expected value極大,則可以用來估計二項分布,而根據中央極限定理可以得知,二項分布執行很多次之後會接近常態分佈(就把兩個連起來了?!) d. P(A...Z) = P(A) $\times$ P(B|A) $\times$ P(C|A..B) $\times$ ... $\times$ P(Z|A...Y) ![](https://i.imgur.com/mgd5BRW.png) 方法一: * $F_{Y}$(y) = P(Y $\leq$ y) = P($\frac{1}{X}$ $\leq$ y) = P(X $\geq$ $\frac{1}{y}$) = 1 - P(X < $\frac{1}{y}$) = 1 - $F_{X}$($\frac{1}{y}$) = 1 - $\frac{1}{y^{3}}$ = 1 - $y^{-3}$ * $f_{Y}$(y) = 3$Y^{-4}$ (應該是 $X \leq \frac{1}{y}$,因為 $X < 0$) 方法二: * Let Y = u(x) = $\frac{1}{X}$, X = v(y) = $\frac{1}{Y}$ * V'(y) = - $Y^{-2}$ * $f_{Y}$(y) = f(V(y)) $\times$ |V'(y)| = 3($\frac{1}{y})^{2}$ $\times$ |-$\frac{1}{y^{2}}$| = 3$Y^{-4}$ ![](https://i.imgur.com/qofCP6e.png) 題目翻譯:在0~1中random取一個數字,做6次,取6次中最大的 (不確定)F(x)代表的是x是最大值的機率,則代表其他5次都是小於x,一次小於X的機率為P(X $\leq$ x) = x,6次則為$x^{6}$,f(x) = F'(x) = 6$x^{5}$ ==$F(x) = x^6, f(x) = 6x^5$== ![](https://i.imgur.com/DZExMlq.png) exponential distribution: expected value = $\theta$, P(X $\leq$ $\theta$) = F($\theta$) = 1 - $e^{-\frac{\theta}{\theta}}$ = 1 - $\frac{1}{e}$ ![](https://i.imgur.com/1EYyqYY.png) $\frac{280000+90000}{280000+90000+135000}$ = $\frac{74}{101}$ ![](https://i.imgur.com/TYloUQy.png) 額 這個要寫什麼 我不會啦QQ radom experiment that can be performed multiple times: 在相處的不同時間點和階段告白??? event based in it: 接受或拒絕??? 可是事實上是表白失敗一次之後的機率就是0了吧? ![](https://i.imgur.com/E3SEKrL.png) $\frac{P(E)}{P(E)+P(F)+P(G)}$ ==$\lim_{n \to \infty}\Sigma_{i=0}^n(1-P(E)-P(F)-P(G))^iP(E) = \dfrac{P(E)}{P(E)+P(F)+P(G)}$== ![](https://i.imgur.com/T1XX0di.png) $\int_{0}^{\pi/2} \frac{l}{2} sin\theta d\theta$ = $\frac{l}{2}$ p = $\frac{l/2}{\pi/4}$ $\pi$ = $\frac{2l}{p}$ ![](https://i.imgur.com/4q5mi8W.png) 輸光:( [相關資料](http://datagenetics.com/blog/may42015/index.html) ![](https://i.imgur.com/BKGqc54.png) 如果要算的是第k次紅燈和第k+1次紅燈: (綠紅)or(紅綠):$\frac{1}{3} \times \frac{2}{3} \times (\frac{1}{2})^{k}$ (紅紅):$\frac{2}{3} \times (\frac{1}{2})^{k} \times \frac{2}{3} \times (\frac{1}{2})^{k+1}$ $F(x) = P(X<=x) = \dfrac{x}{1-w} \\f(x) = \dfrac{1}{1-w} \\E[X] = \dfrac{1-w}{2} \\答案 = \dfrac{2}{9}E[紅綠]+\dfrac{2}{9}E[綠紅]+\dfrac{1}{9}E[紅紅] \\E[紅綠]=E[綠紅]=\dfrac{1}{2} \\E[紅紅]=否知:(,可能是\frac{3}{4}$ ![](https://i.imgur.com/AJLLerY.png) $\frac{1}{99}$ 通式如下:若為丟x顆中y顆 $C^{x-2}_{y-1}$ $\frac{(x-y-1)!(y-1)!}{(x-1)!}$ = $\frac{1}{x-1}$ Let $P(X, Y)$ be the possibility that shoot $X$ balls and 投進 $Y$ 球 claim: $P(X, Y) = \frac{1}{X - 1}$ can be proved by 數學歸納法 $P(X, 1) = P(X - 1, 1) \times \frac{X - 2}{X - 1}$ $P(X, X - 1) = P(X - 1, X - 2) \times \frac{X - 2}{X - 1}$ $P(X, Y) = P(X - 1, Y) \times (1 - \frac{Y}{X - 1}) + P(X - 1, Y - 1) \frac{Y - 1}{X - 1}$ ![](https://i.imgur.com/uSKiQZI.png) ![](https://i.imgur.com/aDWmaH9.png) 再次輸光:( 假設成功n次,對於每個正整數n, 滿足$x_1<x_2<...<x_{n-1}>x_n$的機率為$\frac{1}{n!}$ 因為$1<=n<\infty,E[n] = \Sigma_1^{\infty}n\times\frac{1}{n!}=e$ :) 下面才是對ㄉ! > 真的是這樣ㄇ? OAO > $P(x_1 < x_2 \dots < x_{n - 1} > x_n)$ 應該是 $\frac{1}{(n - 1)!} - \frac{1}{n!}$ 吧 (?) > 所以 $E(X) = \sum_{n = 2}^{\infty} n \times (\frac{1}{(n - 1)!} - \frac{1}{n!}) = \sum_{n = 2}^{\infty} \frac{1}{(n - 2)!} = e$ > 好像合理!
{"metaMigratedAt":"2023-06-15T06:45:47.388Z","metaMigratedFrom":"Content","title":"機率期中考考古 2019","breaks":true,"contributors":"[{\"id\":\"8adcfc76-8572-4903-98c4-9a3ed29f23dd\",\"add\":530,\"del\":30},{\"id\":\"6e384799-fe3d-4010-95be-a258d2fbc5b3\",\"add\":37,\"del\":0},{\"id\":\"bfbb1ae9-3bed-4f9c-8322-f9f11496e348\",\"add\":564,\"del\":2},{\"id\":\"0138982e-f262-4ee6-bfcb-60ef0aea1916\",\"add\":2848,\"del\":98},{\"id\":\"ede71de1-396c-4002-8633-a9376c581dd9\",\"add\":9,\"del\":0}]"}
Expand menu