# 破密學專題 0920 --- [總共筆](https://hackmd.io/rEa_Y3SPQDO5MNrvx6bE8A) * Monoid: * Identity * 結合律 * Group: * Inverse * Identity * Associativity 結合律 * Homomorphism: 1. $f:G\rightarrow H$ 2. $f(g_1,g_2) = f(g_1)f(g_2)$ 3. $f(1_G) = 1_H$ 4. 由 2.3 可推出: $f(g^{-1}) = f(g)^{-1}$ * Monoid homomorphism: * Example: $(Z,+),\{0,1,2,3 \}, \text{strings}, ,...$ * Category "Polyoid": * Object: A,B,C,... * Functions: $f:A\rightarrow B, g:B\rightarrow C, h:C\rightarrow D$ * Morphisms (arrows): $f,g,h,..$ * Associativity of composition: $(h \circ g) \circ f = h \circ (g \circ f)$ * Identity: * $\forall c \in \mathbb{C}$ , $\exists1_c:C\rightarrow C \text{ such that } 1_D\circ f = f \circ 1_c = f$ * Category theory: * Two basic properties * Compose arrows associavity * Exists an identity for each object * Category of groups * Objects: groups $G_1,G_2,...$ * Arrows: * group * homomophisms * $\phi:G_1 \rightarrow G_2$ and $\psi:G_2 \rightarrow G_3$ can derive $\psi \circ \phi: G_1 \rightarrow G_3$ * [Small category](https://en.wikipedia.org/wiki/Category_(mathematics)#Small_and_large_categories) * Category of sets: * sets as objects, functions as arrows * $\mathbb{S}et \supset \mathbb{G}roup$ * $\mathbb{S}et \supset \mathbb{R}ing$ * Discrete Category: * Every component is independent. * E.g. $S = \{x_1,x_2,...,x_n\}$ $e : object : x_1,x_2,...,x_n$ $arrow : 1_{x1},1_{x2},...,1_{xn}$ * Posetal category; * Definition: There's only on arrow between two objects. * [Russell's paradox](https://zh.wikipedia.org/wiki/%E7%BD%97%E7%B4%A0%E6%82%96%E8%AE%BA) * covariant Functor $F: \mathbb{C} \rightarrow \mathbb{O}$ * $f:A \rightarrow B$, $F(f):F(A) \rightarrow F(B)$ * $F(f \circ g)=F(f) \circ F(g)$ * $F(1_c) = 1_{FC}$ * contravarient functor $F^{-1}: \mathbb{C}^{op} \rightarrow \mathbb{D}$ * ==Power set functor== $P : Set \rightarrow Set$ (Map between categories) * $S \mapsto P(S) = \{ S' \subset S\}$ * $f: S \rightarrow T \mapsto P(f): P(S) \rightarrow P(T)$ * Vector space $\mathbb{V}ect_k$ $V=\{v_1,v_2,...,\}$ * $(V,+) is an abelian group$ * $k \times V \rightarrow V$ * $0v = 0$ * $1v = 1$ * $(\alpha + \beta)v = \alpha v + \beta v$ * $(\alpha \beta)v = \alpha (\beta v)$ * dual space endofunctor: * Definition: $V \mapsto V^* = \{\phi : V \rightarrow k\}$ ## 打屁哈拉留言區 ==**逃避並不可恥但是有用**== phi 怎麼打 $\phi$ <3