###### tags: `直線與圓` # 挑戰題 6. 試求過直線 $x+2y-8=0$ 與 $2x-y-1=0$ 的交點,且被兩直線 $L_1:3x+4y-7=0$ 與 $L_2:3x+4y+8=0$ 所截得的線段長為 $3\sqrt{2}$ 的直線 $L$ 方程式$\underline{\qquad\qquad}$。 --- $\boxed{答}:7x+y-17=0、x-7y+19=0$ $\boxed{解}:$畫一個簡圖,  由直線系的假設法,設$L:k(x+2y-8)+(2x-y-1)=0$ $\Rightarrow (k+2)x+(2k-1)y+(-8k-1)=0$ 又 $L_1$、$L_2$ 之間的距離 $\begin{align}d=\frac{|\;8-(-7)\;|}{\sqrt{3^2+4^2}}=3\end{align}$ 得知 $\theta=45^\circ$ 因此 $\begin{align}\cos 45^\circ=\frac{\sqrt{2}}{2}=\frac{|\;3\cdot(k+2)+4\cdot(2k-1)\;|}{\sqrt{3^2+4^2}\sqrt{(k+2)^2+(2k-1)^2}}\end{align}$ (請自行計算) 得 $\begin{align}k=\frac{9}{13}、-\frac{13}{9}\end{align}$ 因此 $\begin{align}k=\frac{9}{13}\Rightarrow 9(x+2y-8)+13(2x-y-1)=0\Rightarrow 7x+y-17=0\end{align}$ $\begin{align}k=-\frac{13}{9}\Rightarrow 13(x+2y-8)-9(2x-y-1)=0\Rightarrow x-7y+19=0\end{align}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up