###### tags: `多項式` # 挑戰題 5. $n\in\mathbb{N}$,若 $f(x)=x^n(x^2+ax+b)$ 被 $(x-2)^2$ 除之餘式為 $2^n(x-2)$,則數對 $(a,b)=$ $\underline{\qquad\qquad}$。 --- $\boxed{答}:(-3,2)$ $\boxed{解}:$ 由除法原理 $x^n(x^2+ax+b)=(x-2)^2Q(x)+2^n(x-2)$ 令 $x=2$ 代入, $2^n(4+2a+b)=0\Rightarrow b=-2a-4$ 代入原式, $x^n$(<font color="#f00">$x^2$</font>$+ax-2a$<font color="#f00">$-4$</font>$)=(x-2)^2Q(x)+2^n(x-2)$ $x^n((x+2)(x-2)+a(x-2))=(x-2)^2Q(x)+2^n(x-2)$ 等號兩邊同除以 $x-2$,則 $x^n(x+2+a)=(x-2)Q(x)+2^n$ 再次令 $x=2$ 代入, $2^n(4+a)=2^n\Rightarrow a=-3\Rightarrow b=2$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up