###### tags: `直線與圓` # 證明題 2. 己知 $\overline{PA}$、$\overline{PB}$ 為圓的兩切線,且切於 $A$,$B$ 兩點,過 $P$ 的直線交圓於 $C$、$D$ 兩點,與弦 $\overline{AB}$ 交於 $Q$,試證明:$\overline{PQ}^2=\overline{PC}\cdot\overline{PD}-\overline{QC}\cdot\overline{QD}$ --- $\boxed{證}:$作一個簡圖  $\angle PQA=\pi-\angle PQB$ $\therefore \cos\angle PQA=-\cos\angle PQB$ $\begin{align}\frac{\overline{QA}^2+\overline{QP}^2-\overline{PA}^2}{2\cdot\overline{QA}\cdot\overline{QP}}=-\frac{\overline{QB}^2+\overline{QP}^2-\overline{PB}^2}{2\cdot\overline{QB}\cdot\overline{QP}}\end{align}$ $\begin{align}\overline{QB}(\overline{QA}^2+\overline{QP}^2-\overline{PA}^2)+\overline{QA}(\overline{QB}^2+\overline{QP}^2-\overline{PB}^2)=0\end{align}$ $\begin{align}(\overline{QA}+\overline{QB})(\overline{QA}\cdot\overline{QB}+\overline{QP}^2-\overline{PA}^2)=0\end{align}$ $\begin{align}\Rightarrow\overline{QA}\cdot\overline{QB}+\overline{QP}^2-\overline{PA}^2=0\end{align}$ $\begin{align}\overline{PQ}^2=\overline{PA}^2-\overline{QA}\cdot\overline{QB}=\overline{PC}\cdot\overline{PD}-\overline{QC}\cdot\overline{QD}\end{align}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up