###### tags: `數與式` # 挑戰題 2. 假設 $a>b>c>0$,試求 $\begin{align}2a^2+\frac{1}{ab}+\frac{1}{a(a-b)}-10ac+25c^2\end{align}$ 的最小值為 $\underline{\qquad\qquad}$。 --- $\boxed{答}:4$ $\boxed{解}:$明顯地,$a^2-10ac+25c^2=(a-5c)^2$ 因此當 $a=5c$ 時,會有最小值, 於是只需要討論 $\begin{align}a^2+\frac{1}{ab}+\frac{1}{a(a-b)}\end{align}$ 的最小值即可; $\begin{align}a^2+\frac{1}{ab}+\frac{1}{a(a-b)}\end{align}$ $\begin{align}=a^2+\frac{a-b+b}{ab(a-b)}\end{align}$ $\begin{align}=a^2+\frac{1}{b(a-b)}\end{align}$ 由算幾不等式,$\begin{align}\frac{b+(a-b)}{2}\geq\sqrt{b(a-b)}\end{align}$ $\begin{align}\Rightarrow \frac{a^2}{4}\geq b(a-b)\Rightarrow\frac{1}{b(a-b)}\geq\frac{4}{a^2}\end{align}$ 代回原式, $\begin{align}\geq a^2+\frac{4}{a^2}\geq2\sqrt{4}=4\end{align}$ 驗算算幾不等式等號成立的條件: 當 $\begin{align}a^2=\frac{4}{a^2}\Rightarrow a=\sqrt{2}\end{align}$ 且當 $\begin{align}b=(a-b)\Rightarrow b=\frac{\sqrt{2}}{2}\end{align}$ $\begin{align}c=\frac{a}{5}=\frac{\sqrt{2}}{5}\end{align}$ 此時原式會有最小值 $4$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up