###### tags: `數學問題` $\begin{align}\end{align}$ # 柯西 $a,b,c,x,y,z\in\mathbb{R}$,$a,b,c>0$,$a+b+c=1$,求證: $$(ax+by+cz)^4\leq ax^4+by^4+cz^4$$ --- $(a+b+c)^3(ax^4+by^4+cz^4)$ $=[(a^{\frac{1}{4}})^4+(b^{\frac{1}{4}})^4+(c^{\frac{1}{4}})^4]^3[(a^{\frac{1}{4}}x)^4+(b^{\frac{1}{4}}y)^4+(c^{\frac{1}{4}}z)^4]$ $\geq (ax+by+cz)^4$