###### tags: `直線與圓` # 挑戰題 10. 平面上有兩點 $A(-1,0)$、$B(1,0)$,試求在圓$(x-3)^2+(y-4)^2=4$ 上取一點 $P=\underline{\qquad\qquad}$,使得 $\overline{AP}^2+\overline{BP}^2$ 有最小值。 --- $\boxed{答}:\begin{align}(\frac{9}{5},\frac{12}{5})\end{align}$ $\boxed{解}:$作一個簡圖 ![挑戰題10.簡圖](https://i.imgur.com/7QU8n9H.png =250x) 由中線平方定理, $\begin{align}\overline{PA}^2+\overline{PB}^2=2(\overline{PO}^2+1)\end{align}$ 當 $P$ 在 $\overline{OC}$ 上時,$\overline{PO}$ 會有最小值 $\overline{OC}-\overline{PC}=5-2=3$ $\begin{align}\overline{PA}^2+\overline{PB}^2=2(\overline{PO}^2+1)\geq 20\end{align}$ $P$ 點坐標可用分點公式得到 $\begin{align}(\frac{9}{5},\frac{12}{5})\end{align}$