###### tags: `多項式` # 挑戰題 6. 設 $f(x)=x^4+x^3+x^2+x+1$,試求 $f(x^5)$ 除以 $f(x)$ 的餘式 $\underline{\qquad\qquad}$。 --- $\boxed{答}:5$ $\boxed{解}:$ 由 $(x-1)(x^4+x^3+x^2+x+1)=x^5-1$ 先用迭代法,求出 $f(x^5)$ 除以 $x^5-1$ 的餘式,$x^5=1$ 代入即得餘式為 $f(x^5)=f(1)=5$ 因此 $f(x^5)=(x^5-1)Q(x)+5$ $=(x-1)(x^4+x^3+x^2+x+1)Q(x)+5$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up