###### tags: `多項式` # 挑戰題 3. 設 $f(x)$ 為 $2022$ 次多項式,且對於 $k=0,1,2,\cdots,2022$,滿足 $\begin{align}f(k)=\frac{k}{k+1}\end{align}$,試求 $f(2023)=\underline{\qquad\qquad}$。 --- $\boxed{答}:\begin{align}\frac{1011}{1012}\end{align}$ $\boxed{解}:$ 由已知 $\begin{align}f(k)=\frac{k}{k+1}\Rightarrow (k+1)f(k)-k=0\end{align},k=0,1,2,\cdots,2022$ 這個條件,意思是 $(x+1)f(x)-x$ 是一個 $2023$ 次的多項式,且這個多項式的 $2023$ 個根分別為 $0,1,2,\cdots,2022$ 因此假設為 $(x+1)f(x)-x=a\cdot x\cdot(x-1)\cdot(x-2)\cdot(x-3)\cdots(x-2022)$ 令 $x=-1$ 代入,則 $1=a\cdot(-1)\cdot(-2)\cdot(-3)\cdots(-2023)$ $\begin{align}\Rightarrow a=-\frac{1}{2023!}\end{align}$ 令 $x=2023$ 代入 $\begin{align}2024f(2023)-2023=-\frac{1}{2023!}\cdot2023\cdot2022\cdot2021\cdots1\end{align}$ $\Rightarrow 2024f(2023)-2023=-1$ $\begin{align}\Rightarrow f(2023)=\frac{2022}{2024}=\frac{1011}{1012}\end{align}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up