###### tags: `數與式` # 挑戰題 5. 假設正數 $a$ 的小數部份為 $b$,且 $a+b^2=n$,$n\in\mathbb{N}$,試求 $b=\underline{\qquad\qquad}$。 --- $\boxed{答}:0$ 或 $\begin{align}\frac{-1+\sqrt{5}}{2}\end{align}$ $\boxed{解}:$ 假設 $a$ 的整數部份為 $k$,小數部份為 $b$, 所以 $a=k+b$ 因為 $0\leq b<1$,所以 $n=k$ 或 $k+1$ (1) 若 $n=k$,則 $b=0$; (2) 若 $n=k+1$,則 $k+b+b^2=k+1$ $\Rightarrow b^2+b-1=0$ $\Rightarrow\begin{align}b=\frac{-1\pm\sqrt{5}}{2}\end{align}$ 因為$\begin{align}b=\frac{-1-\sqrt{5}}{2}<0\end{align}$不合,因此$\begin{align}b=\frac{-1+\sqrt{5}}{2}\end{align}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up