###### tags: `多項式` # 挑戰題 1. 已知多項式 $f(x)$ 被 $(x-1)^2$ 除之餘式為 $x+1$,$f(x)$ 被 $(x+1)^2$ 除之餘式為 $2x-1$,求 $f(x)$ 被 $(x+1)^2(x-1)$ 除之餘式為 $\underline{\qquad\qquad}$。 --- $\boxed{答}:\begin{align}\frac{1}{4}x^2+\frac{5}{2}x-\frac{3}{4}\end{align}$ $\boxed{解}:$由除法原理, 設 $f(x)=(x+1)^2(x-1)Q(x)+a(x+1)^2+2x-1$ 代 $x=1$,則 $4a+1=2\Rightarrow a=\begin{align}\frac{1}{4}\end{align}$ 因此餘式為 $\begin{align}\frac{1}{4}(x+1)^2+2x-1\end{align}$ $\begin{align}=\frac{1}{4}x^2+\frac{5}{2}x-\frac{3}{4}\end{align}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up