###### tags: `多項式` # 挑戰題 10. 已知 $k\in\mathbb{R}$,$x^2+(k-5)x+(k+3)=0$ 的兩根均小於 $-2$,求 $k$ 值範圍 $\underline{\qquad\qquad}$。 --- $\boxed{答}:13\leq k<17$ $\boxed{解}:$ 設方程式的兩根為 $\alpha,\beta$, 因為兩根均小於 $-2$, 因此 $\alpha+2<0$、$\beta+2<0$ 則由根與係數關係, 兩根和 $\alpha+\beta=5-k$,$\alpha\beta=k+3$ 由於兩根均小於 $-2$ $\left\{\begin{align}判別式 \geq 0\\ (\alpha+2)+(\beta+2)<0 \\(\alpha+2)(\beta+2)> 0\end{align}\right.$ $\Rightarrow\left\{\begin{align}(k-5)^2-4(k+3)\geq 0\\ 5-k+4<0\\ k+3+2(5-k)+4>0\end{align}\right.$ $\Rightarrow\left\{\begin{align}k^2-14k+13\geq 0\\k>9\\k<17\end{align}\right.$ $\Rightarrow\left\{\begin{align}k\leq1 \;or\;k\geq 13\\9<k<17\end{align}\right.$ $\Rightarrow13\leq k<17$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up