###### tags: `直線與圓` # 證明題 1. 已知 $\overline{AB}$ 為圓 $C_1$ 的直徑,半徑為 $r$ 的圓 $C_2$ 與 $C_1$ 內切且與 $\overline{AB}$ 切於 $D$ 點,試證明 $\begin{align}\frac{1}{r}=\frac{1}{\overline{AD}}+\frac{1}{\overline{DB}}\end{align}$ --- $\boxed{證}:$作一個簡圖 ![證明題1.簡圖](https://i.imgur.com/Hw8ILkE.png =150x) 設 $\overline{AB}=2R$, $\overline{CD}=\sqrt{(R-r)^2-r^2}=\sqrt{R^2-2Rr}$ $\begin{align}\frac{1}{\overline{AD}}+\frac{1}{\overline{DB}}=\frac{1}{\overline{CA}-\overline{CD}}+\frac{1}{\overline{CB}+\overline{CD}}\\ =\frac{1}{R-\sqrt{R^2-2Rr}}+\frac{1}{R+\sqrt{R^2-2Rr}}\\=\frac{R+\sqrt{R^2-2Rr}+R-\sqrt{R^2-2Rr}}{(R-\sqrt{R^2-2Rr})(R+\sqrt{R^2+2Rr})}\end{align}$ $\begin{align}=\frac{2R}{R^2-(R^2-2Rr)}=\frac{2R}{2Rr}=\frac{1}{r}\end{align}$