###### tags: `數與式` # 挑戰題 10. 已知 $n$ 是自然數,若 $\begin{align}\frac{n}{71}=0.\overline{a_1a_2a_3a_449a_7a_8\cdots a_{35}}\end{align}$,試求 $n$ 值為 $\underline{\qquad\qquad}$。 --- $\boxed{答}:42$ $\boxed{解}:\begin{align}\frac{n}{71}=0.\overline{a_1a_2a_3a_449a_7a_8\cdots a_{35}}\end{align}$ 兩邊同乘 $10^4$,將小數點向後移四位 $\begin{align}10^4\times\frac{n}{71}=a_1a_2a_3a_4.\overline{49a_7a_8\cdots a_{35}a_1a_2a_3a_4}\end{align}$ 考慮 $10^4=71\times 140+60$ 所以 $\begin{align}\frac{10^4n}{71}=\frac{(71\times 140+60)n}{71}=140n+\frac{60n}{71}\end{align}$ $n\geq 7$ 才有可能是四位數, 因此 $\begin{align}\frac{60n}{71}\end{align}$ 的小數部份是 $0.49\cdots$,整數部份設為 $k$ $\begin{align}\frac{60n}{71}=k+0.49\cdots\end{align}$ $\Rightarrow 60n=71k+71\times 0.49\cdots$ 又因為 $71\times 0.49=34.79$ 因此 $60n=71k+35$, 可以看出 $k$ 必為奇數,且為 $5$ 的倍數,且 $k$ 除以 $3$ 餘 $2$ 時,$n$ 才能有整數解; 取 $k=5$,則不合; 取 $k=35$,則 $n=42$。
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up