###### tags: `直線與圓` # 挑戰題 9. 過點 $P(1,2)$ 且與兩軸在第一象限內所圍成的 $\Delta$ 有最小面積 $m$ 時之直線,其方程式為 $\underline{\qquad\qquad}$,求 $m=\underline{\qquad\qquad}$ --- $\boxed{答}:2x+y-4=0,4$ $\boxed{解}:$設 $x$ 截距為 $a$,$y$ 截距為 $b$,$a>0$,$b>0$, 過 $P(1,2)$ 的直線截距式為 $\begin{align}\frac{x}{a}+\frac{y}{b}=1\end{align}$ 因此 $\begin{align}\frac{1}{a}+\frac{2}{b}=1\end{align}$ 由算幾不等式, $\begin{align}\frac{1}{a}+\frac{2}{b}\geq 2\sqrt{\frac{1}{a}\cdot\frac{2}{b}}\Rightarrow\frac{1}{4}\geq\frac{2}{ab}\Rightarrow\frac{ab}{2}\geq4\end{align}$ 因此當 $\begin{align}\frac{1}{a}=\frac{2}{b}=\frac{1}{2}\Rightarrow a=2,b=4\end{align}$ $\begin{align}\Delta=\frac{1}{2}ab\geq4\end{align}$ 此時直線方程式為 $2x+y-4=0$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up