###### tags: `數學問題` $\begin{align}\end{align}$ # 數列級數 設 $a_1、a_2、\cdots a_{10}$ 與 $b_1、b_2、\cdots b_{10}$ 皆為等差數列,若 $a_1 + a_2+\cdots+a_{10}=2011,b_1+b_2+\cdots+b_{10}=55$,且 $a_1b_1+a_2b_2+\cdots+a_{10}b_{10}=121$,求 $a_1b_{10}+a_2b_9+\cdots+a_9b_2+a_{10}b_1=?$ --- 設 $k=a_1b_{10}+a_2b_9+\cdots+a_9b_2+a_{10}b_1$ \begin{align}121+k & =a_1(b_1+b_{10})+a_2(b_2+b_9)+\cdots+a_{10}(b_{10}+b_1)\\ & =11(a_1+a_2+\cdots+a_{10})\\ & =11\times2011\\ & =22121 \end{align} $\Rightarrow k=22000$ --- 有二實數數列 $\left<a_n\right>,\left<b_n\right>,n\geq2$, 已知 $a_1^2+a_2^2+\cdots+a_n^2=1,b_1^2+b_2^2+\cdots+b_n^2=1,a_1b_1+a_2b_2+\cdots+a_nb_n=0$, 證明:$(a_1+a_2+\cdots+a_n)^2+(b_1+b_2+\cdots+b_n)^2\leq n$ --- 令 $A=a_1+a_2+\cdots+a_n$,$B=b_1+b_2+\cdots+b_n$ \begin{equation} \begin{split} 0 & \leq & (-Aa_1-Bb_1+1)^2+(-Aa_2-Bb_2+1)^2+\cdots+(-Aa_n-Bb_n+1)^2 \\ & = & A^2(a_1^2+a_2^2+\cdots+a_n^2)+B^2(b_1^2+b_2^2+\cdots+b_n^2)+n\\ & &-2A(a_1+a_2+\cdots+a_n)-2B(b_1+b_2+\cdots+b_n)+2AB(a_1b_1+a_2b_2+\cdots+a_nb_n) \\ & = & A^2\cdot 1+B^2\cdot 1+n-2A\cdot A-2B\cdot B+2AB\cdot0\\ & = & -A^2-B^2+n\\ \Rightarrow & & A^2+B^2\leq n \end{split} \end{equation} --- \begin{align} 0 & \leq \sum_{k=1}^n\left(-\left(\sum_{i=1}^n a_i\right)\cdot a_k-\left(\sum_{i=1}^n b_i\right)\cdot b_k+1\right)^2\\ & =\left(\sum_{i=1}^n a_i\right)^2\left(\sum_{i=1}^na_i^2\right)+\left(\sum_{i=1}^n b_i\right)^2\left(\sum_{i=1}^nb_i^2\right)+n-2\left(\sum_{i=1}^n a_i\right)^2-2\left(\sum_{i=1}^n b_i\right)^2+2\left(\sum_{i=1}^n a_i\right)\left(\sum_{i=1}^n b_i\right)\left(\sum_{i=1}^n a_ib_i\right)\\ &=n-\left(\sum_{i=1}^n a_i\right)^2-\left(\sum_{i=1}^n b_i\right)^2\\ &\Rightarrow\left(\sum_{i=1}^n a_i\right)^2+\left(\sum_{i=1}^n b_i\right)^2\leq n \end{align} [參考資料](https://artofproblemsolving.com/community/c6h2012699p14113052) --- 當 $n=2$ 時 ,$a_1^2+a_2^2=1,b_1^2+b_2^2=1,a_1b_1+a_2b_2=0$ 因為 $a_1, a_2, b_1, b_2$ 四數不可能全為 $0$,在不失一般性的情況下,假設 $a_1\neq0$, 則 $b_1=-\frac{a_2b_2}{a_1}$ 代入 $b_1^2+b_2^2=1$ $\Rightarrow$ $\frac{a_2^2b_2^2}{a_1^2}+b_2^2=1\Rightarrow b_2^2=a_1^2,b_1^2=a_2^2$ 那麼 \begin{align} (a_1+a_2)^2+(b_1+b_2)^2 & = a_1^2+a_2^2+b_1^2+b_2^2+2(a_1a_2+b_1b_2)\\ &=2+2(a_1a_2-\frac{a_2b_2^2}{a_1})\\ &=2+2\cdot\frac{a_2}{a_1}(a_1^2-b_2^2)\\ &=2 \end{align} 令 $n=k$ 時,$a_1^2+a_2^2+\cdots+a_k^2=1,b_1^2+b_2^2+\cdots+b_k^2=1,a_1b_1+a_2b_2+\cdots+a_kb_k=0,$ $(a_1+a_2+\cdots+a_k)^2+(b_1+b_2+\cdots+b_k)^2\leq k$ 成立; 當 $n=k+1$ 時,$a_1^2+a_2^2+\cdots+a_k^2+a_{k+1}^2=1,b_1^2+b_2^2+\cdots+b_k^2+b_{k+1}^2=1,a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1}=0,$ 假設 $a_1\neq 0$,則 \begin{align} & b_1=-\frac{a_2b_2+a_3b_3+\cdots a_{k+1}b_{k+1}}{a_1}\\ \Rightarrow & \frac{(a_2b_2+a_3b_3+\cdots+a_{k+1}b_{k+1})^2}{a_1^2}+b_2^2+\cdots+b_{k+1}^2=1\\ \Rightarrow & (a_2b_2+a_3b_3+\cdots+a_{k+1}b_{k+1})^2+a_1^2b_2^2+\cdots+a_1^2b_{k+1}^2=a_1^2\\ \Rightarrow & \end{align} --- $2\times 3\times4+3\times4\times5+\cdots+10\times11\times12$ --- $\begin{align} &\frac{1}{4}\left(2\times3\times4\times5 - 1\times2\times3\times4\right)+\frac{1}{4}(3\times4\times5\times6-2\times3\times4\times5)+\cdots\frac{1}{4}(10\times11\times12\times13-9\times10\times11\times12)\\ =&\frac{1}{4}(10\times11\times12\times13-1\times2\times3\times4)\\ =&4290-6\\ =&4284\end{align}$ --- ## $$\sum_{k=1}^{110} \frac{2022^{\frac{2k}{111}}}{2022^\frac{k}{111}+1}$$ --- $$\frac{a^\frac{2k}{111}}{a^\frac{k}{111}+1}+\frac{a^{2-\frac{2k}{111}}}{a^{1-\frac{k}{111}}+1}$$ $$f(x)=\frac{2022^{2x}}{2022^x+1}$$$$f(1-x)=\frac{2022^{2-2x}}{2022^{1-x}+1}=\frac{2022^{2-x}}{2022+2022^x}$$$$\begin{align}f(x)+f(1-x)&=\frac{2022^{2-x}(2022^x+1)+2022^{2x}(2022+2022^x)}{(2022^x+1)(2022+2022^x)}\\ &=\frac{2022^2+2022^{2-x}+2022^{2x+1}+2022^{3x}}{2022+2022^x+2022^{x+1}+2022^{2x}}\end{align}$$ --- ## 試化簡 $\sum_{k=0}^n(-1)^k2^{2n-2k}C^{2n-k+1}_k$ 令 $a_n=\sum$ --- ## 試證:對所有正整數 $n\geq 2$,不等式 $\sum_{k=2}^n\left(\log_{\frac{3}{2}}(k^3+1)-\log_{\frac{3}{2}}(k^3-1)\right)<1$ SFS $\frac{(2^3+1)(3^3+1)\cdots(n^3+1)}{(2^3-1)(3^3-1)\cdots(n^3-1)}<\frac{3}{2}$ 注意到: $\frac{(k+1)^3+1}{k^3-1}=\frac{(k+2)(k^2+k+1)}{(k-1)(k^2+k+1)}=\frac{k+2}{k-1}$ 因此,$\frac{2^3+1}{n^3-1}\cdot\frac{3^3+1}{2^3-1}\cdot\frac{4^3+1}{3^3-1}\cdots\frac{n^3+1}{(n-1)^3-1}=\frac{2^3+1}{n^3-1}\cdot\frac{4}{1}\cdot\frac{5}{2}\cdots\frac{n+1}{n-2}$ $=\frac{2^3+1}{(n-1)(n^2+n+1)}\cdot\frac{(n-1)\cdot n\cdot(n+1)}{1\cdot2\cdot3}=\frac{3}{2}\cdot\frac{n^2+n}{n^2+n+1}<\frac{3}{2}\cdot1$ --- ## 證明 $1+\frac{1}{2}+\cdots\frac{1}{n}\geq \ln n$ $\left(1+\frac{1}{n}\right)^n<e$ $\ln\left(1+\frac{1}{n}\right)<\frac{1}{n}$ $\ln\frac{n+1}{n}<\frac{1}{n}$ $\ln\left(\frac{2}{1}\cdot\frac{3}{2}\cdots\frac{n+1}{n}\right)<\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}$ $1+\frac{1}{2}+\cdots+\frac{1}{n}>\ln(n+1)\geq\ln n$ 如果用數學歸納法證明它 當 $n=1$ 時,$1\geq \ln 1$ 成立; 令 $n=k$ 時,$1+\frac{1}{2}+\cdots+\frac{1}{k}\geq\ln k$ 成立; 當 $n=k+1$ 時,$1+\frac{1}{2}+\cdots+\frac{1}{k}+\frac{1}{k+1}\geq\ln k+\frac{1}{k+1}$ 欲證 $\ln k+\frac{1}{k+1}\geq \ln (k+1)$ $\Leftrightarrow \ln(k+1)-\ln k\leq \frac{1}{k+1}$ $\Leftrightarrow \ln\frac{k+1}{k}\leq\frac{1}{k+1}$ $\Leftrightarrow \ln\left(1+\frac{1}{k}\right)\leq\frac{1}{k+1}?$