###### tags: `數與式` # 挑戰題 1. 已知 $x,y$ 為實數,且 $x\neq y$,試化簡 $\sqrt{2\sqrt{xy}-x-y}=\underline{\qquad\qquad}$。 --- $\boxed{答}:\sqrt{-x}+\sqrt{-y}$ $\boxed{解}:$ 由 $\sqrt{xy}$ 可知 $xy>0$ 則 $x>0, y>0$ 或 $x<0, y<0$ 若$x>0,y>0$,則 $\sqrt{2\sqrt{xy}-x-y}$ $=\sqrt{-(\sqrt{x}^2+\sqrt{y}^2-2\sqrt{xy})}$ $=\sqrt{-(\sqrt{x}-\sqrt{y})^2}$ 因此 $\sqrt{x}-\sqrt{y}=0\Rightarrow x=y$ 不合; 若$x<0,y<0$,則 $-x>0, -y>0$ $\sqrt{2\sqrt{xy}-x-y}$ $=\sqrt{\sqrt{-x}^2+\sqrt{-y}^2+2\sqrt{(-x)\cdot(-y)}}$ $=\sqrt{(\sqrt{-x}+\sqrt{-y})^2}$ $=\sqrt{-x}+\sqrt{-y}$ 即為所求。
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up