###### tags: `數與式` # 挑戰題 8. 試求有序數對 $(x,y,z)=\underline{\qquad\qquad}$ ,滿足 $\begin{align}\sqrt{x+\frac{1}{2}}+\sqrt{y-4}+\sqrt{z^2+1}=\frac{1}{2}(x+y+z^2+\frac{1}{2})\end{align}$ --- $\boxed{答}:\begin{align}(\frac{1}{2},5,0)\end{align}$ $\boxed{解}:$ 令 $\begin{align}a=\sqrt{x+\frac{1}{2}}\end{align}$,$b=\sqrt{y-4}$,$c=\sqrt{z^2+1}$ $\begin{align}\Rightarrow x=a^2-\frac{1}{2},y=b^2+4,z^2=c^2-1\end{align}$ $\begin{align}a+b+c=\frac{1}{2}(a^2+b^2+c^2+3)\end{align}$ $a^2+b^2+c^2-2a-2b-2c+3=0$ 配方 $(a-1)^2+(b-1)^2+(c-1)^2=0$ $\Rightarrow a=b=c=1$ $\begin{align}\Rightarrow x=\frac{1}{2},y=5,z=0\end{align}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up