###### tags: `數與式` # 挑戰題 7. 假設 $2021x^3=2022y^3=2023z^3$,其中 $xyz>0$,且 $\sqrt[3]{2021x^2+2022y^2+2023z^2}=\sqrt[3]{2021}+\sqrt[3]{2022}+\sqrt[3]{2023}$,試求 $\begin{align}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\underline{\qquad\qquad}\end{align}$ --- $\boxed{答}:1$ $\boxed{解}:$ 令 $2021x^3=2022y^3=2023z^3=t$ $\begin{align}\Rightarrow \sqrt[3]{\frac{t}{x}+\frac{t}{y}+\frac{t}{z}}=\sqrt[3]{\frac{t}{x^3}}+\sqrt[3]{\frac{t}{y^3}}+\sqrt[3]{\frac{t}{z^3}}\end{align}$ $\begin{align}\Rightarrow\sqrt[3]{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\end{align}$ $\begin{align}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0,1,-1\end{align}$ 又因為 $xyz>0$,所以 $x>0$,$y>0$,$z>0$ $\begin{align}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\end{align}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up