###### tags: `多項式` # 證明題 4. 已知 $x^3+ax^2+bx+c=0$ 有三個實根, 1. 求證 $a^2-3b\geq 0$; 2. 求證 $\sqrt{a^2-3b}\leq$ 最大根 $-$ 最小根 $\begin{align}\leq\frac{2}{\sqrt{3}}\sqrt{a^2-3b}\end{align}$。 --- $\boxed{證}:$設三實根為 $\alpha、\beta、\gamma$, 則 $\alpha+\beta+\gamma=-a$,$\alpha\beta+\beta\gamma+\alpha\gamma=b$,$\alpha\beta\gamma=-c$, 1. $a^2-3b=(\alpha+\beta+\gamma)^2-3(\alpha\beta+\beta\gamma+\alpha\gamma)$ $=\alpha^2+\beta^2+\gamma^2-\alpha\beta-\beta\gamma-\alpha\gamma$ $\begin{align}=\frac{1}{2}(2\alpha^2+2\beta^2+2\gamma^2-2\alpha\beta-2\beta\gamma-2\alpha\gamma)\end{align}$ $\begin{align}=\frac{1}{2}[(\alpha^2-2\alpha\beta+\beta^2)+(\beta^2-2\beta\gamma+\gamma^2)+(\alpha^2-2\alpha\gamma+\gamma^2)]\end{align}$ $\begin{align}=\frac{1}{2}[(\alpha-\beta)^2+(\beta-\gamma)^2+(\alpha-\gamma)^2]\geq 0\end{align}$ 1. 不失一般性的情況下,設三根 $\alpha\leq\beta\leq\gamma$ $(\gamma-\alpha)^2-(a^2-3b)$ $=(\gamma-\alpha)^2-(\alpha^2+\beta^2+\gamma^2-\alpha\beta-\beta\gamma-\alpha\gamma)$ $=-\beta^2+\alpha\beta+\beta\gamma-\alpha\gamma$ $=(\gamma-\beta)(\beta-\alpha)\geq 0$ $\Rightarrow (\gamma-\alpha)^2\geq a^2-3b$ $\Rightarrow \gamma-\alpha\geq\sqrt{a^2-3b}$ 又 $\begin{align}\frac{4}{3}(a^2-3b)-(\gamma-\alpha)^2\end{align}$ $=\begin{align}\frac{4}{3}(\alpha^2+\beta^2+\gamma^2-\alpha\beta-\beta\gamma-\alpha\gamma)-(\gamma^2-2\alpha\gamma+\alpha^2)\end{align}$ $\begin{align}=\frac{1}{3}(\alpha^2+4\beta^2+\gamma^2-4\alpha\beta-4\beta\gamma+2\alpha\gamma)\end{align}$ $\begin{align}=\frac{1}{3}(\alpha-2\beta+\gamma)^2\geq 0\end{align}$ $\begin{align}\Rightarrow\frac{4}{3}(a^2-3b)\geq(\gamma-\alpha)^2\end{align}$ $\begin{align}\Rightarrow \frac{2}{\sqrt{3}}\sqrt{a^2-3b}\geq\gamma-\alpha\end{align}$