# Crypto/primimity > People claim that RSA with two 1024-bit primes is secure. But I trust no one. That's why I use three 1024-bit primes. I even created my own prime generator to be extra cautious! Provided files: `primimity-public-key.txt` and `primimity.py`. `primimity-public-key.txt` ``` n: 2739699434633097765008468371124644741923408864896396205946954196101304653772173210372608955799251139999322976228678445908704975780068946332615022064030241384638601426716056067126300711933438732265846838735860353259574129074615298010047322960704972157930663061480726566962254887144927753449042590678730779046154516549667611603792754880414526688217305247008627664864637891883902537649625488225238118503996674292057904635593729208703096877231276911845233833770015093213639131244386867600956112884383105437861665666273910566732634878464610789895607273567372933766243229798663389032807187003756226177111720510187664096691560511459141773632683383938152396711991246874813205614169161561906148974478519987935950318569760474249427787310865749167740917232799538099494710964837536211535351200520324575676987080484141561336505103872809932354748531675934527453231255132361489570816639925234935907741385330442961877410196615649696508210921 e: 65537 c: 2082926013138674164997791605512226759362824531322433048281306983526001801581956788909408046338065370689701410862433705395338736589120086871506362760060657440410056869674907314204346790554619655855805666327905912762300412323371126871463045993946331927129882715778396764969311565407104426500284824495461252591576672989633930916837016411523983491364869137945678029616541477271287052575817523864089061675401543733151180624855361245733039022140321494471318934716652758163593956711915212195328671373739342124211743835858897895276513396783328942978903764790088495033176253777832808572717335076829539988337505582696026111326821783912902713222712310343791755341823415393931813610365987465739339849380173805882522026704474308541271732478035913770922189429089852921985416202844838873352090355685075965831663443962706473737852392107876993485163981653038588544562512597409585410384189546449890975409183661424334789750460016306977673969147 ``` `primimity.py` ```python #!/usr/bin/env python3 from Crypto.Util.number import getRandomNBitInteger, isPrime def find_next_prime(n): if n <= 1: return 2 elif n == 2: return 3 else: if n % 2 == 0: n += 1 else: n += 2 while not isPrime(n): n += 2 return n def prime_gen(): i = getRandomNBitInteger(1024) d = getRandomNBitInteger(8) for _ in range(d): i = find_next_prime(i) p = find_next_prime(i) d = getRandomNBitInteger(8) for _ in range(d): i = find_next_prime(i) q = find_next_prime(i) d = getRandomNBitInteger(8) for _ in range(d): i = find_next_prime(i) r = find_next_prime(i) return (p,q,r) def main(): (p,q,r) = prime_gen() print(p) print(q) print(r) if __name__ == '__main__': main() ``` There is a vulnerability in how the prime numbers are found. The first one is a random prime, the ones after that are the second next prime every time. Probably, we need to find a prime close to log(n,3) I think.