# 0814 Meeting ## Motivation - SR-GNN等graph based model沒有考慮到 1. aggregate後的pattern順序性 2. aggregate時應該考慮幾層鄰居的資訊 - PA-GNN對node embedding加上reverse order embedding來給予attention一些順序上的資訊 ![](https://i.imgur.com/8pmM9r9.png) - **目標: 把所有node embeeding塞進有考慮時間序列的model** - 類似的pattern會在不同時間上出現 - 2017: iphone X -> airpods 1 -> iphone X cases 2019: iphone 11 -> airpods pro -> iphone 11 cases ## Problem Settings - 同個item在不同時間點的session被點擊時應該會具有不同的物理意義 - 考慮不同action的重要性 -> view & click ## Baselines - A Contextualized Temporal Attention Mechanism for Sequential Recommendation ==缺前處理code== > https://tianchi.aliyun.com/dataset/dataDetail?dataId=649 ![](https://i.imgur.com/XlApncG.png) ![](https://i.imgur.com/64CMIwr.png) - ==**Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation**== ![](https://i.imgur.com/9MnPyQh.png) ![](https://i.imgur.com/DsoP8tx.png) ![](https://i.imgur.com/owTkbZk.png) - Time Interval Aware Self-Attention for Sequential Recommendation - 對position和time interval做embedding - 換成session資料 => jdata優先, 因為時間範圍也很廣 ![](https://i.imgur.com/6QJxJcZ.png) ![](https://i.imgur.com/vmbuGxE.png) - Time Matters: Sequential Recommendation with Complex Temporal Information - Absolute Time Pattern - customers are more likely to buy T-shirts in summer than in winter - ==Relative Time Pattern== - focuses on the **time interval between each pair of user behaviors** - The green line presents a user’s repeated purchases of guitar picks - guitar->tuner (red line): Most users purchase guitars and tuner together - guitar->strings (blue line): buy new strings about 150 days later than the guitar ![](https://i.imgur.com/dX04Zoc.png) - Global Context Enhanced Graph Neural Networks for Session-based Recommendation ![](https://i.imgur.com/yXJV73I.png) ![](https://dl.airtable.com/.attachmentThumbnails/543c58337b293816ecad2fbdb875daee/810a158f) :::spoiler ![](https://i.imgur.com/lHGpnJk.png) ::: --- :::spoiler - DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks ![](https://i.imgur.com/PzDIlo2.png) --- - GACOforRec: Session-Based Graph Convolutional Neural Networks Recommendation Model ![](https://i.imgur.com/Y3rsWzE.png) - Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recommender Systems ![](https://i.imgur.com/7IlG5RV.png) ::: --- ## Experiments > https://docs.google.com/spreadsheets/d/1zt0VoYEde4HbgbkTIJVProU2dTSEA0xDXtnyDM3aRA4/edit?usp=sharing ![](https://i.imgur.com/LHrt1VX.png) - jdata, Tabaoo, Tmall, yochoose 1/4待補 - kkbox沒有timestamp > yoochoose 1/4 跑1 epoch大該需train 7小時 > ![](https://i.imgur.com/EPDzmSP.png) 其他篇論文給的數據 ![](https://i.imgur.com/jxdCoIV.png) --- 某區user A區關注iphone8 -> 換B區關注 ->換C區 隔年, A區關注iphone11 -> 換B區關注 ->換C區 - 上方改成dynamic graph (放入user/ session id), 讓不同時間的item有不同embedding, 最後和原本的session embedding結合