# 問題 https://yukicoder.me/problems/no/2396 $\left(\sum_{n\geq 0}\binom{N}{Ln+K}M^n\right)\bmod{B}$ を求めよ. - $1\leq N,M\leq 10^{18}$ - $0\leq K\lt L\leq 10^3$ - $1\leq B\leq 10^9$ # 解法 $B\geq 2$ で解ければよい. \\[\binom{N}{Ln+K}=[x^N]\frac{x^{Ln+K}}{(1-x)^{Ln+K+1}}\\] より \\[\begin{align*} \sum_{n\geq 0}\binom{N}{Ln+K}M^n &=[x^N]\sum_{n\geq 0}\frac{x^{Ln+K}}{(1-x)^{Ln+K+1}}M^n\\ &=[x^N]\frac{x^K}{(1-x)^{K+1}}\sum_{n\geq 0}\left(M\frac{x^L}{(1-x)^L}\right)^n\\ &=[x^N]\frac{x^K(1-x)^{L-(K+1)}}{(1-x)^L-Mx^L}\\ \end{align*}\\] となる.任意MOD畳み込み+Bostan-Moriで $O(L\log L\log N)$. [実装例](https://yukicoder.me/submissions/896645)