# Radial and angular wavefunctions The few first wavefunctions are listed below, \begin{align} R_{10} & = 2a^{-3/2}\ \exp(-r/a) \\ R_{20} & = \frac{1}{\sqrt{2}} a^{-3/2}\ (1-\frac{1}{2}\frac{r}{a}) \exp(-r/2a) \\ R_{21} & = \frac{1}{\sqrt{24}} a^{-3/2}\ \frac{r}{a} \exp(-r/2a) \\ R_{30} & = \frac{2}{\sqrt{27}} a^{-3/2}\ \left[ 1-\frac{2}{3}\frac{r}{a} + \frac{2}{27}(\frac{r}{a})^2 \right] \exp(-r/3a) \\ R_{31} & = \frac{8}{27\sqrt{6}} a^{-3/2}\ ( 1-\frac{1}{6}\frac{r}{a} ) (\frac{r}{a}) \exp(-r/3a) \\ R_{32} & = \frac{4}{81\sqrt{30}} a^{-3/2}\ (\frac{r}{a})^2 \exp(-r/3a) \\ \\ Y^0_0 & = (\frac{1}{4\pi})^{1/2} \\ Y^0_1 & = (\frac{3}{4\pi})^{1/2} \cos{\theta} \\ Y^{\pm 1}_1 & = \mp (\frac{3}{8\pi})^{1/2} \sin{\theta} e^{\pm i\phi} \\ Y^{0}_2 & = (\frac{5}{16\pi})^{1/2} (3\cos^2{\theta} - 1) \\ Y^{\pm 1}_2 & = \mp (\frac{15}{8\pi})^{1/2} \sin{\theta} \cos{\theta} e^{\pm i\phi} \\ Y^{\pm 2}_2 & = (\frac{15}{32\pi})^{1/2} \sin^2{\theta} e^{\pm 2i\phi}. \end{align} --- For a hydrogem atom, the quantized energy level and the Bohr radius of are \begin{equation} E_n = - \left[ \frac{m}{2\hbar^2}(\frac{e^2}{4\pi \epsilon_0})^2 \right] \frac{1}{n^2} = -\frac{\hbar^2}{2ma^2}\ \frac{1}{n^2} = \frac{E_1}{n^2} =\frac{-13.6 \text{eV}}{n^2} \end{equation} \begin{equation} a \equiv \frac{4\pi\epsilon_0\hbar^2}{me^2} = 0.529 \text{Å} \end{equation}