--- tags: handoverOK, Tensorflow,Keras on Smoking --- # AI_Tensorflow using using a pre-trained model inception resenet v2 ### 5204 Enviorment > 目前相關資源都放在 5204上~這台配有1T 的資料碟與256G ssd系統碟 aewin@192.168.99.90:/home/aewin/work/work/work/ > 你可存取5204 ~透過ssh scp SAMBA > SAMBA 和 SSH 帳密皆為aewin/aewin ! > 目前5204 IP為 192.168.99.90 ``` ssh aewin@192.168.99.90:/home/aewin/work/work/work/ or scp aewin@192.168.99.90:/home/aewin/test_file ./your_pc ``` #### Tensorflow Code and Data ``` aewin@192.168.99.90:/home/aewin/work/work/work/tensorflow/code/V001 ``` ### TRANSFER LEARNING https://medium.com/@yuhsienyeh/machine-learning-transfer-learning-%E9%81%B7%E7%A7%BB%E5%AD%B8%E7%BF%92-5095f8a14367 ### TF-slim https://zhuanlan.zhihu.com/p/41679504 ### TFRecord files https://blog.csdn.net/miaomiaoyuan/article/details/56865361 ### Tensorflow convert .ckpt to .pb https://cloud.tencent.com/developer/ask/188650 ### why using Tensorflow Resnet V2 https://www.intel.ai/model-zoo-ia/#gs.l29s00 ### Run Demo Code by using tensorflow to do AI https://github.com/hsiaojung/tflearn_smo ``` ssh aewin@192.168.99.90 first~ sudo docker run --runtime=nvidia -it --rm -p 8888:8888 tensorflow/tensorflow:latest-gpu-py3-jupyter bash or sudo docker run -it --rm -p 8888:8888 -v /home/cyril/work/work/work:/tf/mnt tensorflow/tensorflow:latest-gpu-py3-jupyter bash docker run --runtime=nvidia -it -p 8888:8888 tensorflow/tensorflow:latest-gpu bash sudo docker run --runtime=nvidia -v /home/aewin/work/:/mnt -it -p 8888:8888 tensorflow:gpu bash cat /tf/command jupyter notebook --ip='*' --allow-root ```