# Double DQN 練習 1. DQN概念說明: DQN就是Deep Learning與Q_Learning的結合,傳統Q_Learning所建置的Q表會因為環境的多種狀態與動作而過於龐大運算上也較消耗機器效能,所以我們藉由深度學習的方式來預測我們的下一步,也可以結合各種不同的神經網路來進行訓練。 ![](https://i.imgur.com/t15Tkdc.png) 2. 何為DDQN: DDQN與DQN最大的差別就是分為實際進行訓練的evaluation network與訓練目標 target network,而target network久久更新一次,evaluation network則持續更新向target network逼近。 ## 程式實作部分 * #### 匯入所需函式與參數設定 ```python= import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import gym # Hyper Parameters BATCH_SIZE = 32 LR = 0.01 # learning rate EPSILON = 0.9 # greedy policy GAMMA = 0.9 # reward discount TARGET_REPLACE_ITER = 100 # target update frequency MEMORY_CAPACITY = 2000 env = gym.make('CartPole-v0') env = env.unwrapped N_ACTIONS = env.action_space.n N_STATES = env.observation_space.shape[0] ``` * #### 建立神經網路 ```python= class Net(nn.Module): def __init__(self, ): super(Net, self).__init__() self.fc1 = nn.Linear(N_STATES, 50) self.fc1.weight.data.normal_(0, 0.1) # initialization self.out = nn.Linear(50, N_ACTIONS) self.out.weight.data.normal_(0, 0.1) # initialization def forward(self, x): x = self.fc1(x) x = F.relu(x) actions_value = self.out(x) return actions_value ``` * #### 建置DQN ```python= class DQN(object): def __init__(self): self.eval_net, self.target_net = Net(), Net() self.learn_step_counter = 0 # for target updating self.memory_counter = 0 # for storing memory self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2)) # initialize memory self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR) self.loss_func = nn.MSELoss() def choose_action(self, x): x = torch.unsqueeze(torch.FloatTensor(x), 0) # input only one sample if np.random.uniform() < EPSILON: # greedy actions_value = self.eval_net.forward(x) action = torch.max(actions_value, 1)[1].data.numpy() action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE) # return the argmax index else: # random action = np.random.randint(0, N_ACTIONS) action = action if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE) return action def store_transition(self, s, a, r, s_): transition = np.hstack((s, [a, r], s_)) # replace the old memory with new memory index = self.memory_counter % MEMORY_CAPACITY self.memory[index, :] = transition self.memory_counter += 1 def learn(self): # target parameter update if self.learn_step_counter % TARGET_REPLACE_ITER == 0: self.target_net.load_state_dict(self.eval_net.state_dict()) self.learn_step_counter += 1 # sample batch transitions sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE) b_memory = self.memory[sample_index, :] b_s = torch.FloatTensor(b_memory[:, :N_STATES]) b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES+1].astype(int)) b_r = torch.FloatTensor(b_memory[:, N_STATES+1:N_STATES+2]) b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:]) # q_eval w.r.t the action in experience q_eval = self.eval_net(b_s).gather(1, b_a) # shape (batch, 1) q_next = self.target_net(b_s_).detach() # detach from graph, don't backpropagate q_target = b_r + GAMMA * q_next.max(1)[0].view(BATCH_SIZE, 1) # shape (batch, 1) loss = self.loss_func(q_eval, q_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() ``` * #### 最終環境訓練與結果 ```python= dqn = DQN() print('\nCollecting experience...') for i_episode in range(250): s = env.reset() ep_r = 0 while True: env.render() a = dqn.choose_action(s) # take action s_, r, done, info = env.step(a) # modify the reward x, x_dot, theta, theta_dot = s_ r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8 r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5 r = r1 + r2 dqn.store_transition(s, a, r, s_) ep_r += r if dqn.memory_counter > MEMORY_CAPACITY: dqn.learn() if done: print('Ep: ', i_episode, '| Ep_r: ', round(ep_r, 2)) if done: break s = s_ env.close() ```