# Pytorch dqn & ddqn ##### 1. DQN與DDQN簡單介紹 ##### 2. 程式搭建部分 ##### 2. 比較兩者訓練結果 ##### 4. 參考資料 ##### 5. 程式碼連結 --- ## 一、DQN & DDQN 簡單介紹 DQN其實就是Deep Learning + Reinforcement Learning,藉由神經 網路的部分來預測接下來將採取的動作,這麼做不但可以省去儲存龐大Q表的空間更可以計算更複雜的環境狀態來增強強化學習的效果。 而DDQN與DQN最大的差異就在他們之間的更新部分,DQN的實際訓練的網路(eval_net)與目標網路(target_net)的更新同時執行的,而DDQN則是將我們的目標網路更新給延後,更新時會直接把 evaluation network 的參數整組複製過來。 接著簡單說明一下DQN的訓練概念,由於每個狀態之間都存在著時序關係,為了不讓這個時序關係影響到我們的訓練結果,我們會採用經驗收集法(store_transition)來儲存各個狀態、動作、獎勵等,然後採取隨機回傳來打亂彼此的時序關係並執行訓練。 --- ## 二、程式比較與說明 1. #### 匯入所需要的模組與設定參數 ```python= import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import gym # Hyper Parameters BATCH_SIZE = 32 LR = 0.01 # learning rate EPSILON = 0.9 # greedy policy GAMMA = 0.9 # reward discount TARGET_REPLACE_ITER = 100 # target update frequency MEMORY_CAPACITY = 2000 env = gym.make('CartPole-v0') env = env.unwrapped N_ACTIONS = env.action_space.n N_STATES = env.observation_space.shape[0] ENV_A_SHAPE = 0 if isinstance(env.action_space.sample(), int) else env.action_space.sample().shape ``` 2. #### 搭建我們神經網路 ```python= class Net(nn.Module): def __init__(self, ): super(Net, self).__init__() self.fc1 = nn.Linear(N_STATES, 50) self.fc1.weight.data.normal_(0, 0.1) # initialization self.out = nn.Linear(50, N_ACTIONS) self.out.weight.data.normal_(0, 0.1) # initialization def forward(self, x): x = self.fc1(x) x = F.relu(x) actions_value = self.out(x) return actions_value ``` 3. #### 接著搭建我們的DQN也就是智能體(Agent) ```python= class DQN(object): def __init__(self): self.eval_net, self.target_net = Net(), Net() self.learn_step_counter = 0 # for target updating self.memory_counter = 0 # for storing memory self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2)) # initialize memory self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR) self.loss_func = nn.MSELoss() def choose_action(self, x): x = torch.unsqueeze(torch.FloatTensor(x), 0) # input only one sample if np.random.uniform() < EPSILON: # greedy actions_value = self.eval_net.forward(x) action = torch.max(actions_value, 1)[1].data.numpy() action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE) # return the argmax index else: # random action = np.random.randint(0, N_ACTIONS) action = action if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE) return action def store_transition(self, s, a, r, s_): transition = np.hstack((s, [a, r], s_)) # replace the old memory with new memory index = self.memory_counter % MEMORY_CAPACITY self.memory[index, :] = transition self.memory_counter += 1 def learn(self): if len(self.memory) < 32: return # target parameter update if self.learn_step_counter % TARGET_REPLACE_ITER == 0: self.target_net.load_state_dict(self.eval_net.state_dict()) self.learn_step_counter += 1 # sample batch transitions sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE) b_memory = self.memory[sample_index, :] b_s = torch.FloatTensor(b_memory[:, :N_STATES]) b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES+1].astype(int)) b_r = torch.FloatTensor(b_memory[:, N_STATES+1:N_STATES+2]) b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:]) # q_eval w.r.t the action in experience q_eval = self.eval_net(b_s).gather(1, b_a) # shape (batch, 1) q_next = self.target_net(b_s_).detach() # detach from graph, don't backpropagate q_target = b_r + GAMMA * q_next.max(1)[0].view(BATCH_SIZE, 1) # shape (batch, 1) loss = self.loss_func(q_eval, q_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() ``` ## 三、比較兩者訓練差異 #### 1.DQN的訓練結果 ![](https://i.imgur.com/BgZDqBH.png)![](https://i.imgur.com/QhcLmcD.png) DQN的訓練過程通常要到差不多270~300步時才能有較好的成果,但也能發現非常地不穩定,而DDQN則可以稍微快一些的達到訓練效果,也比DQN穩定一些。 --- ## 四、參考資料 * https://pyliaorachel.github.io/blog/tech/python/2018/06/14/deep-q-learning.html * https://medium.com/pyladies-taiwan/reinforcement-learning-%E9%80%B2%E9%9A%8E%E7%AF%87-deep-q-learning-26b10935a745 * https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/ ## 五、程式碼連結 https://drive.google.com/drive/u/1/folders/1IoU4V9mG37hVNxU9fBhK0UX30js5UaOP