# Super-Resolution: a survey ## 3. SR方法 - pre-upsampling SR - 先用傳統的方法(e.g:Bicubic)==上取樣(放大圖片)==,然後再用深度學習refine(精煉)上取樣後的照片 - 問題:因為先做upsample的side-effect會使雜訊放大和變得模糊,且在高維度做運算會使時間和空間成本變高 - 例子:SRCNN - post-upsampling SR - 為了降低維度從而增加計算效率,先做convolution再做upsample - 問題:只有一層upsample在scale factor(放大倍率)4,8倍以上時 學習難度會大幅上升,且每一個scale factor都需要有獨立的訓練模型 - progressively-upsampling SR - 依序CNNs - upsample並不斷重複之後得出HR,慢慢放大圖片所以解決multiscale計算複雜的問題,降低學習難度並提高表現 - 問題:模型的設計變得很複雜... - 例子:LapSRN, MS-LapSRN用前一級的復原照片來當base image - 例子:proSR保留主要的資訊 - iterative up-and-down sampling SR - apply back projection
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up