Issue: For taylor sine degree 3 E1 = model error E2 = rounding error E3 = fp-taylor cushion E4 = lppaver cushion E1 + E2 + E3 = 0.00025888789504748890456219 https://www.wolframalpha.com/input?i=0.00025887019991748890456219+%2B+0.00000001769513 But I can verify with 0.00025886, E4 is negative? Noticed that 0.00025886 > E1 - (E2 + E3) 0.00025886 > 0.00025885250478748890456219 https://www.wolframalpha.com/input?i=0.00025887019991748890456219+-+0.00000001769513 0.00025885 gives sat Theory: direction of elimination of floats is incorrect, but why? I want to prove a contradiction. f1 and f2 contain some fp ops r1 and r2 are bounds from FPTaylor for f1 and f2 e1 and e2 is f1 and f2 without fp ops currently, we would eliminate floats by strengthening, and then negate everything f1 < f2 floats eliminated by strengthening formula. We get: e1 + r1 < e2 - r2 We then negate everything: ! (e1 + r1 < e2 - r2) e1 + r1 >= e2 - r2 We are *weakening* the contradiction which is unsafe? We should strengthen the contradiction I think we should do one of the following: If we not before elim, we get: f1 < f2 f1 >= f2 eliminate floats by strengthening e1 - r1 >= e2 + r2 OR f1 < f2 elimiante floats by weakening e1 - r1 < e2 + r2 then negate everything e1 - r1 >= e2 + r2