--- title: Wk12 Solution --- 分工:共同討論,每人貢獻三分之一 --- ### Group 5 $f(z)=\frac{z^2}{z^2+2z+2k}, k\in \rm I\!R$ (1) k在什麼區間內時 $\oint_{c_1}f(z)dz + \oint_{c_2}f(z)dz \neq 0$ $C_1 : |z-4i+1|=1$ $C_2 : |z+4i+1|=1$ ![](https://i.imgur.com/PwCdBQV.jpg =300x) hint: 可以觀察k變動時,f(z)的pole的移動 (2) 請問$k$在上題求出的區間內時 $Res(f(z), z1) + Res(f(z), z2) = ?$ $z1, z2為f(z)的兩個poles$ **A** ![](https://i.imgur.com/1RTJss4.jpg) 助教: OK --- ### Group 10 大明在複變期中考遇到了一題: >${g(z) = \frac{1}{(z-4)^{2020}(z-5)(z-6)}}$,求 ${Res(g(z),4)}$。 他心想這根本送分題,只要代入Residue公式就可以輕鬆秒殺,沒想到代入公式竟然需要微分2019次,根本算不出來! 老師怕大明放棄複變而選擇去修離散數學,所以給了他一個提示,就是下面的第1小題。 請聰明的各位救救大明的複變函數,幫他解出這兩小題。 1. $f(z) =\frac{1}{(z-a_1)(z-a_2)......(z-a_n)}$,$n \geq2$ 證明 ${\sum_{k=1}^{n}Res( f(z),a_k) = 0}$。 hint: Residue theorem and 第七周第10組的題目 2. ${g(z) = \frac{1}{(z-4)^{2020}(z-5)(z-6)}}$,求 ${Res(g(z),4)}$。 ![](https://i.imgur.com/9hiAIQp.jpg) 助教: OK --- ### Group 12 Evaluate the following contour integral where $C: |z - \frac{1}{4}\pi| = \frac{1}{8}\pi.$ $$ \oint_C \frac{sec^2z - 2tanz}{1 + cos4z}dz $$ hint: step 1/ determine $\lim_{z\rightarrow \frac{\pi}{4}}\frac{sec^2z - 2tanz}{1 + cos4z}.$ (可忽略)step 2/ apply Them 19.5.2 ![](https://i.imgur.com/u0jsGMm.png) **A** ![](https://i.imgur.com/QLmJpuz.jpg) 助教: OK --- ### Group 13 * **Q:** ![](https://i.imgur.com/kkP014D.png) $C_R$為以下方程式所圍成的封閉路徑(逆時針),如上圖 $$\begin{cases} y=3,\ x\in[0,R] \\ y=\sin{\dfrac{x}{2}},\ x\in[0,R]\\ x=0\\ x=R \end{cases},\ \ R\in \mathbb{N}$$ 求$\lim \limits _{R\to\infty}\oint_{C_R} \dfrac{\sec z}{e^z} dz$ hint: 觀察哪些pole會被路徑所圍住 **A** ![](https://i.imgur.com/jIpYBrq.jpg) * 助教:OK --- ### Group 17 Evaluate $\displaystyle\oint_{C}^{}\dfrac{tan(z)}{z^2-\frac{\pi^2}{9}}dz$, $c:|z-\frac{\pi}{2}| = \frac{\pi}{2}$ (counter clock wise) **A** ![](https://i.imgur.com/siurC5O.jpg) * 助教:OK,但還可以化簡 --- ### Group 19 Evaluate the contour integral $\displaystyle\oint_{C}^{}\dfrac{z^2+\dfrac{1}{z^2}}{(\bar{z}-a)(b-\bar{z})}dz$, where $0<|a|<r<|b|$ by residue theorem :::spoiler Hint 想想看要怎麼把 $\bar{z}$ 消掉?($z\bar{z}=r^2$) ::: ![](https://imgur.com/QlUR5Yl.jpg =400x) **A** ![](https://i.imgur.com/RPN2pbk.jpg) * 助教:求殘值時(bz-r^2)消去時還會留下1/b倍,而且少了2$\pi$i