---
title: Wk3 Solution
---
---
### Group 2
**Q:**
已知$f(z)=u(x, y)+iv(x, y)$在整個複數平面上皆可解析,且$3|f'(z)|^4-54|f'(z)|^2+231<=0$,平面中有由兩向量$(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}), (\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y})$所圍出的平行四邊形,試求此平行四邊形面積的極值。
**A:**

助教:OK
---
### Group 3
Show that $e^{e^{e^{...^{e^z}}}}$ satisfies C-R equations

<font color=gray size=1>IE,你是不是睡著啦</font>
* hint:
* (方法一,比較簡單):
* 先證明$e^z$處處可解析(令$z=x+yi$)
* 再證明若一複函數$f(z)$可解析,則$e^{f(z)}$也滿足C-R Eqautions
* (方法二,比較難但比較有趣) Suppose $f,g$ are analytic. Show that $g\circ f$ is also analytic. ($f:D_f法rightarrow\mathbb{C},\;g:D_g\rightarrow\mathbb{C},\;f(D_f)\subset D_g$)
* $f=u_1+iv_1,\;g=u_2+iv_2,\;g\circ f=u_2(u_1,v_1)+iv_2(u_1,v_1)$
* $\frac{\partial}{\partial x}f(u,v)=f_u u_x+f_v v_x$
**A:** $e^{x+iy} = e^x*e^{iy} = e^x(cos(y)+isin(y))$ is continuous and its first partial differtial is continuous and
$\frac{\partial}{\partial x}e^xcos(y) = e^xcos(y) = \frac{\partial}{\partial y}e^xsin(y), \frac{\partial}{\partial y}e^xcos(y) = -e^xsin(y) = -\frac{\partial}{\partial x}e^xsin(y)$
so $e^z$ is entire function.
Suppose $f(z) = R(z) + iI(z)$ , then
$e^{f(z)} = e^{R(z) + iI(z)} = e^{R(z)}(cos(I(z))+isin(I(z)))$
is continuous and its first partial differential is continuous,
$\frac{\partial}{\partial x}e^{R(z)}cos(I(z)) = e^{R(z)}\frac {\partial R(z)}{\partial x}cos(I(z))-e^{R(z)}sin(I(z))\frac {\partial I(z)}{\partial x} = \frac{\partial}{\partial y}e^{R(z)}sin(I(z)),
\\(because \frac {\partial R(z)}{\partial x} = \frac {\partial I(z)}{\partial y}, \frac {\partial R(z)}{\partial y} = -\frac {\partial I(z)}{\partial x})
\\ \frac{\partial}{\partial y}e^{R(z)}cos(I(z)) = e^{R(z)}\frac {\partial R(z)}{\partial y}cos(I(z)) - e^{R(z)}sin(I(z))\frac {\partial I(z)}{\partial y} = -\frac{\partial}{\partial x}e^{R(z)}sin(I(z))$
so $e^{f(z)}$ is entire function
助教:OK
---
### Group 4
$u(r,\theta)=r^\frac{1}{2}cos(\frac{1}{2}\theta)$
$已知極座標的調和函數形式為\frac{\partial^2 u}{\partial r^2}+\frac{1}{r}\frac{\partial u}{\partial r}+\frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}=0$
(可證明當$u(r,\theta)、v(r,\theta)$滿足極座標中的cauchy-riemann condition時,此式對u、v皆成立,有興趣可以試試看)
(1)請確認$u(r,\theta)$為一調和函數
(2)請找出$u(r,\theta)$的conjugate harmonic function
**A:**!
助教:OK。(2)第一個等號後面少一個r。
---
### Group 5
不知從何年開始,國立台灣大學突然形成了一個傳統,通過代表著自己的函數找到自己命中注定的另一半,而就無數年的查證,雖然會有一大堆人找不到另一半,但成功組成家庭的都過得幸福美滿,今有一大一電機新生「沼王亞」,他的函數是:$u(x, y) = e^x sin(y) + e^y sin(x) + xy$
已知愛情函數$f(z) = u(x, y) + iv(x, y)$ 給 且$f(z)$是處處可解析, 請找出代表他另一半的函數$v(x, y)=?$
我是沼王亞 我是沼王

註1 : f是指愛情函數,u 是指"you", i是指"愛", v 是羅馬數字的"5",諧音就是"我", 由此可證,f即是象徵著"你愛我"的真愛方程式
**A:**
$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$
$\frac{\partial u}{\partial x} = e^x sin(y) + e^y cos(x) + y$
$v(x, y) = -e^xcos(y) + e^ycos(x) + \frac{y^2}{2} + h(x)$
and
$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
$\frac{\partial u}{\partial y} = e^x cos(y) + e^y sin(x) + x$
$-\frac{\partial v}{\partial x} = e^x cos(y) + e^y sin(x) - \frac{dh(x)}{dx}$
$h(x) = -\frac{x^2}{2} + C$
$v(x, y) = -e^xcos(y) + e^ycos(x) + \frac{y^2}{2} - \frac{x^2}{2} + C$
助教:OK
---
### Group 6
Q:
 
>「絆折直樹」在「富視山」滑雪時,被直直的樹根絆倒手骨折了
>座標點為(-4,2),他打電話給救難隊,但是因為「富視山」山頂長年積雪,直升機無法靠近,因此直升機只能停在 $y=-x$ 的懸崖邊,「絆折直樹」打算徒步走到直升機所在的懸崖邊,已知「富視山」的等高線圖(見下圖)近似於調和函數(harmonic function)
$u(r,\theta) = -\dfrac{r^4}{2}sin(2\theta)cos(2\theta)$ 的 level curves
請問:請問直升機停在哪個座標,可以讓「絆折直樹」(依據梯度下降法)走到懸崖邊?
(梯度下降法:從與等高線正交的線往下走)
(注意:直升機只能在 $y=-x$ 上)

>Hint: 最短路徑的方程式與等高線正交(調和共軛)
>Hint: 可參考 Cauchy-Riemann equations in polar coordinates
>Hint: $\cos4\theta = \cos^4\theta - 6\cos^2\theta\sin^2\theta+\sin^4\theta$
補充資料:當目標函數為凸函數時,可以利用梯度下降法求得最短路徑
**A:**
* 助教:OK
---
### Group 10
>小明看完這週複變的線上影片之後,對於 level cerve (等高線) 正交的概念有點存疑,於是他找了一個簡單的函數來研究看看:
$f(z)=z^2=(x+yi)^2=(x^2-y^2)+2xyi=u+vi$
並分別對 $u$、$v$ 在複數平面上畫出 level curve,u 為黃色線,v 為藍色線:
>
>
(1) **請計算 $\nabla u(x,y)$ 和 $\nabla v(x,y)$,並求出 $\nabla u(x,y)$ 和 $\nabla v(x,y)$ 的內積。**
(2) 小明畫完圖後發現,$u$、$v$ 的 level curve 真的幾乎在整個平面都正交 (夾角為 $90^{\circ}$),但唯一在 $z=0$ (原點) 的地方不是正交的?!
**請計算出 $u$、$v$ 各自在圖中通過原點的 level curve 方程式**,以證明 $u$、$v$ 在原點的夾角為 $45^{\circ}$ 而非正交。
(3) 小明越想越不對勁,$z=0$ 也符合 $\nabla u(x,y)\cdot\nabla v(x,y)=0$,怎會不正交?
他忘了,$z=0$ 時,$\nabla u(x,y)=\nabla v(x,y)=0$,所以不用正交也能使內積為 0。
其實想要讓 $u$、$v$ 一定正交,還需要一個條件:$f'(z)\neq 0$。
**請算出若 $f'(z)\neq 0$,則 $\nabla u(x,y)$ 和 $\nabla v(x,y)$ 皆不為 0。**
**A:** (1)
$u(x, y) = x^2 - y^2$ $v(x, y) = 2xy$
$\nabla u(x,y) = 2x\hat{x} - 2y\hat{y}$
$\nabla v(x,y) = 2y\hat{x} + 2x\hat{y}$
$\nabla u(x,y) \cdot \nabla v(x,y) = 0$
(2)
$u(x, y) = x^2 - y^2 = 0 -0 = 0$ , $x+y = 0, x-y = 0$
$v(x, y) = 2xy = 2*0*0 = 0$ , $x = 0, y = 0$
夾45度角
(3)
$f'(z) = \frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y} \neq 0$
so
$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \neq 0$ or
$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \neq 0$
therefore
$\nabla u(x,y) = \frac{\partial u}{\partial x}\hat x+\frac{\partial u}{\partial y}\hat y \neq 0$ and $\nabla v(x,y) = \frac{\partial v}{\partial x}\hat x+\frac{\partial v}{\partial y}\hat y \neq 0$
* 助教:OK
---
### Group 11

**A:**

* 助教:OK
---
### Group 13
* **Q**
a) Prove that $f(z)=z + \dfrac{1}{z}$ is analytic in $\mathbb{C}-\{0+0i\}$.
b) 我們有某一地區的地形圖,其等高線方程式滿足$x^3+xy^2+x=(100-c)(x^2+y^2)$,其中$5\le x\le 10,5\le y\le 10,c$為高度。現在有一個人從山坡上滾下來,假設他在每一點滾動的方向都是「向下最陡的方向」。已知他從$(6,6)$開始滾,則他是否會通過$(10,5)$?。
hint:
想想analytic、harmonic、orthogonal的關係。
**A:**
* 助教:OK
---
### Group 18
(1)冒險家小明在抵達寶藏島後,在一個迷宮的入口處看到了一個壁畫。經過解讀後他發現入口處的位置是(-1,1),而寶藏位於(2,4)的位置,且上面寫了3個方程式。這3個方程式分別代表3條路,並且旁邊寫了在這個迷宮中只能走在可微分的點上。請判斷哪條路可以抵達(2,4)這點。

(2)抵達藏寶點後,藏寶箱上寫著一個謎題,內容包含了一個函數 $\ f(z)=(ax+by-cxy+dy^2)+i(2y-y^2+x^2)$ 且這個函數在整個複數平面上都可解析。你需要幫小明找出密碼abcd來開啟藏寶箱。
**A:**

* 助教:OK