# Nonlinear Control Systems **Author:** Teng-Hu Cheng **email:** tenghu@nycu.edu.tw **Date:** July 2024 **Website:** https://ncrl.lab.nycu.edu.tw/member/ **Slides:** https://sites.google.com/nycu.edu.tw/nonlinear-control-systems-2024/course-materials ## 目錄 [toc] ## Week 1 ### Equilibrium points ### Stability of the equilibrium points ### Phase portraits of 2nd order systems ### Autonomous Vs. Nonautonomous Systems ### Controllability - linear systems ### Controllability - nonlinear systems ## Week 2 ### Limit cycles ![Limit-cycle-a-Stable-limit-cycle-b-Unstable-limit-cycle](https://hackmd.io/_uploads/SkSPPXOCC.png =90%x) ### Functions #### Continuous functions - Not a continuous function ![upload_2c0a07444725e8db472bdcac99437edb-2](https://hackmd.io/_uploads/B1u9nhypA.png =50%x) - A continuous function ![upload_7b99f706bab24cadbfbb6cf47305e75b-2](https://hackmd.io/_uploads/HJtk62yaA.png =50%x) #### Differentiable functions - Non-differentiable functions (not differentiable at x=0) ![Picture1](https://hackmd.io/_uploads/BygDr1320.png =50%x) - Differentiable functions ![Picture2](https://hackmd.io/_uploads/S1lPHkhhA.png =50%x) **Remarks:** - **If a function is differentiable then it’s continuous** - **However, continuity does NOT imply differentiability** #### Continuous Differentiable A function is continuously differentiable if $$f'(x) = lim_{h → 0} \frac{f(x+h) - f(x)}{h}$$ - Continuous Differentiable ![Picture1](https://hackmd.io/_uploads/SJo_8Jh2A.png =50%x) - Differentiable but not $C^1$ ![Picture1](https://hackmd.io/_uploads/H1C8vyh3A.png =30%x) $$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases} $$ $$f'(x) = \begin{cases} -\cos\left(\frac{1}{x}\right) + 2x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases} $$ $f'(x)$ is not continuous at $x$=0 #### Lipschitz conditions Definition: A function $( f : X \to Y)$ is called Lipschitz continuous if there exists a real constant $( L \geq 0 )$ such that for all $( x_1, x_2 \in X )$ $$ \frac{\| f(x_1) - f(x_2) \|}{\| x_1 - x_2 \|} \leq L $$ - Example 1: $f(x) = |x|$ Lipschitz continuous functions that are not everywhere differentiable (not differentiable at $x$=0) **Remark:Lipschitz DOES NOT implies differentiable** - Example 2 $f(x) = \sqrt{x}$ Not differentiable at $x$=0 since $\sqrt{x}$ is not defined.  ### Existence and Uniqueness ### Class K functions ## Week 5 ### Invariant Set ### Lasalle's Theorem **Lasalle's Theorem**: Let $\Omega \subset D$ be a compact set that is positively invariant with respect to $\dot{x} = f(x)$. Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that $\dot{V}(x) \leq 0$ in $\Omega$. Let $E$ be a set of all points in $\Omega$ where $\dot{V}(x) = 0$. Let $M$ be the largest invariant set in $E$. Then every solution starting in $\Omega$ approaches $M$ as $t→\infty$. Given a continuously differentiable function $$V(x)=x_1^2+x_2^2$$and the dynamics $$ \dot x_1 = x_2, $$$$ \dot x_2 = -\frac{g}{l} \sin(x_1) - \frac{c}{m} x_2 $$Substiting the dynamics into the Lyapunov function, yields $$\dot{V} = -\frac{c}{m} x_2^2$$Since $\dot{V}=0$ implies the existence of an invariant set for $x$, the above equation implies that the invariant set consists of $x_2 = 0$ and $\dot x_2 = 0$. Substiting these two conditions into the dynamics yields $$0=-gsin(x_1)/l,$$which implies $x_1=0、n \pi$, $n$ is any integer. Therefore, since $x_1=0$、$x_2=0$, the system is asymptotically stable. ### Radially Unbounded Functions ### Nonautonomous Systems #### Functions for nonautonomous systems - PD:Only one smallest point at $x_1=0$ and $x_2=0$ - PSD:Multiple smallest points ($=0$), other than at $x_1=0$ and $x_2=0$ ![ddg_definiteness](https://hackmd.io/_uploads/Syorx7dCR.svg) - Radially unbounded functions: $V(x)$ does to infinity as $||x||→\infty$. - Decrescent functions: $|W(x,t)|<V(x)$, upper bounded by an autonomous PD function ![Screenshot 2024-09-30 at 21.10.41](https://hackmd.io/_uploads/By7wXX_R0.png) - Uniformly: not depends on time - Globally: not depends on the initial conditions ## Week 6 ### Solutions of differential equations - **Interpretation - Slope** For example, without given initial conditions, the solution to the ODE $$\dot{x} = -x$$ cannot be determine. But we can interpret the meaning from the plot shown below, where the initial $\dot x$ (slope) is known given $x$ ![ODE slope](https://hackmd.io/_uploads/B1r5yGz11x.png =60%x) - **Phrase portrait** Similarly, we can interpret the same ODE $$\dot{x} = -x$$ to find the phase portrait in the figure shown below, where $\dot x$ (slope) represents the red arrows (flow). ![phase portrait](https://hackmd.io/_uploads/HkSlAv-Jye.png =60%x) ### UUB Consider a dynamical system $\dot{x} = -x + \delta \sin(t)$. Let $V(x) = \frac{1}{2}x^2$, then $\dot{V}(x) = x(-x + \delta \sin(t))$ $\dot{V}(x) = -x^2 + \delta x \sin(t) \leq -x^2 + \delta |x|$ Case 1: I.C. $|x(t_0)| > \delta$, $\dot{V}(x(t_0)) < 0$, then $\dot{V}(x) < 0$ until $|x| = \delta$ Case 2: I.C. $|x(t_0)| = \delta$, $\dot{V}(x(t_0)) = 0$ \quad $\Rightarrow \quad |x| = \delta$ as $t \to \infty$ Case 3: I.C. $|x(t_0)| < \delta$, $\dot{V}(x(t_0)) > 0$, then $\dot{V}(x) > 0$ until $|x| = \delta$ **Note that the blue line represents the upperbound of the Lyapunov function $V$, since the uncertainty term in $\dot V$ is upper bounded.** ![v](https://hackmd.io/_uploads/H1zvYDZJyl.png =60%x) Similarly, the blue line represents the upperbound of $x(t)$. ![x](https://hackmd.io/_uploads/rJMPYwWyJl.png =60%x) ### Barbalat's Lemma