$$ \begin{align} ln(\mathbf{s}) &= \frac{\mathbf{s} - \mu}{\mathbf{\sigma}}\\ \frac{\partial \; ln(\mathbf{s})}{\partial \; \mathbf{s}} &= \frac{1}{\sigma} \; \end{align} $$ considering $\mu$ and $\sigma$ to be constant values $$ \begin{align} F(\mathbf{s}) &\approx F(\mathbf{s_0}) + \frac{\partial \; F(\mathbf{s_0})}{\partial \; \mathbf{s_0}}(\mathbf{s} - \mathbf{s_0}) \\ &= F(\mathbf{s_0}) + \frac{\partial \; F(\mathbf{s_0})}{\partial \; ln(\mathbf{s_0})} \times \frac{\partial \; ln(\mathbf{s_0})}{\partial \; \mathbf{s_0}}(\mathbf{s} - \mathbf{s_0})\\ &= F(\mathbf{s_0}) + J \times \frac{\mathbf{s} - \mathbf{s_0}}{\sigma_{\mathbf{s_0}}} \end{align} $$ with $\frac{\partial \; F(\mathbf{s_0})}{\partial \; ln(\mathbf{s_0})} = J$ $$ \begin{align} F(\mathbf{s}) &\approx \frac{J}{\sigma_{\mathbf{s_0}}} \times \mathbf{s} + b\\ \text{where}\; b &= F(\mathbf{s_0}) - \frac{J}{\sigma_{\mathbf{s_0}}} \times \mathbf{s_0} \end{align} $$