Problem === $e_i = np$ $\chi^2_{(n-1)} = \Sigma_i{(f_i-e_i)^2 \over e_i}$[^1] $\Rightarrow \Sigma_i{(n \bar p - np)^2 \over np}$ And $\chi^2_{(n-1)} = \Sigma_i({\bar p - p \over \sqrt{ pq \over n}})^2$ [^2] $= \Sigma_i{n(\bar p - p)^2 \over pq}$ $= \Sigma_i{n^2(\bar p - p)^2 \over npq}$ $= \Sigma_i{(n \bar p - np)^2 \over npq}$ $= \Sigma_i{(f_i - e_i)^2 \over e_iq}$ So $q=1$ ? [^1]: book key formula 12.6 ![Imgur](https://imgur.com/jfZF8WB.png) [^2]: book key formala 9.4 ![Imgur](https://imgur.com/pgm567R.png) --- $b_i=a_ip+x_i$, and $\forall i \in \mathbb{N}$, and $x_i<p$ $\{\Sigma_{\forall i} b_i\}\ (mod\ p)\\ \equiv\{\Sigma_{\forall i} (a_ip+x_i)\}\ (mod\ p) \\ \equiv\{\Sigma_{\forall i} (x_i)\}\ (mod\ p)\\ \equiv\{\Sigma_{\forall i} (x_i\ mod\ p)\}\ (mod\ p)$