<h2>組合語言與微處理機實驗</h2>
---
<h1>NTRU</h1>
楊志璿、許家愷、涂哲誠
---
<h1>Outline</h1>
<font color=verdana>What</font> is this issue?
<font color=yellow>Why</font> is this issue?
<font color=red>How</font> is this issue?
---
<h1><font color=verdana>What</font> is this issue?</h1>
----
A post-quantum cryptography.
Open source.
Can be optimized by hardware.
(known as hardware acceleration)
----
* $\mathbb{N}, p$ are primes, $q \gt p$, and $gcd(p,q)=1$
* Polynomials $\mathbb{f}$ and $\mathbb{g}$ are degree at most $\mathbb{N}-1$
* $\mathbb{f}$ is invertable in $\mathbb{Z}[\mathbb{X}]\over{\mathbb{x}^{\mathbb{N}}-1}$
* $\mathbb{r}$ is a random polynomial
* $\mathbb{m}$ is a message polynomial
----
<font color=verdana>Public</font> key: $\mathbb{h} \equiv \mathbb{f}_q * \mathbb{g}(mod\ q)$
<font color=red>Private</font> key: $\{\mathbb{f}, \mathbb{f}_p\}$
----
$\mathbb{E} \equiv p \cdot \mathbb{r} * \mathbb{h} + \mathbb{m}(mod\ q)$
----
$\mathbb{a} = \mathbb{f}*\mathbb{E}(mod\ q)$
$\mathbb{m}'=\mathbb{f}_p*\mathbb{a}(mod\ p)$
$\mathbb{m}' \equiv \mathbb{f}_p*(p \cdot \mathbb{r} * \mathbb{g} + \mathbb{f} * \mathbb{m})(mod\ p) \equiv \mathbb{m} (mod\ p)$
----
Polynomial multiplication.....
Yeah, <font color=yellow>FFT</font> comes back!
Yeah, <font color=verdana>extended Euclidean</font> algorithm comes back!
---
<h1><font color=yellow>Why</font> is this issue?</h1>
----
楊志璿:資安專長
許家愷:實做專長
涂哲誠:程式專長
----
We want to do something interesting.
---
<h1><font color=red>How</font> is this issue?</h1>
----
<div style="text-align: left">
<h3>Where is hardware acceleration?</h3>
<font color=#FFD43B>"polynomial multiplication"</font>
<font size=6>
In normal way , it takes too many time for multiply and add one by one.
So, the solution nowadays change domain and using prebuild Adder and Multiplier parallelly to accelerate the computation.
</font>
</div>
----
Implement most of the NTRU by <font color=#1589FF>C</font> in Xilinx SDK , and polynomial multiplication will implement in <font color=#BCE954>verilog </font>accessed by AXI interface
----
<h2>Feasibility</h2>

----
Thanks
---
[Spec.](https://ntru.org/f/ntru-20190330.pdf)
{"metaMigratedAt":"2023-06-15T15:54:00.972Z","metaMigratedFrom":"Content","title":"NTRU","breaks":true,"contributors":"[{\"id\":\"0fc0cbc9-72c2-4ec8-9db7-4133b4dfc73c\",\"add\":1916,\"del\":186},{\"id\":\"b1b8cbb8-99de-4578-96a7-1668bf322b69\",\"add\":1105,\"del\":625}]"}