# 2022 IOT
# 路邊停車格即時資訊
##### Real-time On-street Parking System for Scooters and Motorcycle
組員: 施育衡,周宗翰,劉柏顯,陳捷文,陳威宇
---
## Motivation
----
<!-- 台灣的交通主要由機車所構成,並且多數機車族最大的煩惱莫過於尋找停車位,路邊的機車位成了他們的首選。 -->
* Traffic mainly consisted of scooters and motorcycles
* Problem of finding parking space
* Resolve to on-street parking
----
<!-- 但是路邊的停車格與有管理的停車場不同,沒辦法很好的追蹤停車數量。 -->
* Difference between on-street parking and parking lot
* Difficult to track parked vehicle
----
<!-- 因此使用者無法預測此路段何時會有路邊車位,或此路段的停車壅擠程度。 -->
<!-- 所以我們擬研發一套即時機車路邊停車系統, -->
* No well-designed system for tracking on-street empty parking space
* Developing a real-time on-street parking system
----
<!-- 方便使用者追蹤目的地附近車位,減少等待時間,進一步改善交通問題。 -->
* Track on-street parking space
* Minimize their waiting time
* Improve overall traffic congestion.
---
## Feature
----
<!-- 紀錄、分析台灣路邊機車停車格的車位資訊。 -->
1. Record and analyze parking space information
<!-- 提供使用者即時的車位資訊,並透過使用者的位置提供車位推薦。 -->
2. Provide real-time information and recommandation
---
<!-- ## 商業價值 -->
## Commercial Value
----
<!-- 分析使用者喜好,並結合附近展覽,活動,或美食店家等, 推薦哪一些停車空位附近是否有使用者感興趣的事物。 -->
<!-- 另外,分析目標停車場附近的交通概況,加速人流流動,增加曝光率與遊客人數。 -->
1. Analyzing user preferences
2. Combine with nearby exhibitions, events, and restaurants
3. Recommend parking spaces
---
<!-- # 參考文獻與討論 -->
Related Work
===
# and Discussion
----
## Detection
----
<!-- Yolo是一個物體辨識的深度學習模型,給予一張影像,模型會辨識物體的類別與 bounding box 的位置。 -->
### YOLOv7
* Deep learning model for object detection
* Categorize objects
* Frame out bounding box
<!-- 我們可以使用detection的方法經過辨識後,再對偵測後的label進行處理 -->
----
### Usage
* recognize vehicles
* Process label.
<!--
優點:
可以同時汽車與摩托車的停車狀態 -->
----
### Benefits
* Accurately detect vehicle
* Classify vehicle types
<!-- 缺點:
若是影像過大或物體過於密集,此模型處理速度慢且性能不佳 -->
----
### Drawbacks
* Processsing time efficiency
---
## Counting
----
### Car Counting with CNN
<!-- 透過輸入影像,輸出影像的density map,再透過積分的方式數出圖中關注的物體數量 -->
* Predict density map
* Integral methods to count relevent objects.
----
### Benefits
<!-- 優點:
可以在物體密集及嚴重遮擋的情況下,很好地預測圖中的物體數量。 -->
* detect objects from severly blocked and congested environment.
----
### Drawback
<!-- 缺點:
無法精準定位與得知物體大小 -->
* cannot precisely locate objects position
* cannot measure object size.
---
## Data Analysis
----
### IoT Smart Parking System with LSTM
* Time wasted for finding parking space
* Predict empty parking space
---
<!-- # 問題與挑戰 -->
# Problem and Challenges
----
<div style="display: flex; flex-direction: column; justify-content: flex-start; text-align: left; font-size: 33px;">
<span>1. The need for short delay real-time system</span>
<span>2. Rapid data update due to mass flow of traffic </span>
<span>3. Detect vehicle and user intent.</span>
<span>4. Trade off maximize area coverage and minimize cost.</span>
<span>5. Interference to sensors by obstacles and extreme condition</span>
<span>6. Wrong vehicle on parking slots </span>
<span>7. Congested parking space analysis caused by illegal parking and insufficient space.</span>
<span>8. Project cost should be at a fair price</span>
<span>9. Commercial advertisement to user combined with parking.</span>
</div>
---
# Sensors
----
* Camera (sigular or multiple): Webcam or CCTV camera (differ from video quality and price)
* Ultrasonic sensors
* Radar sensors
---
# Reference
- [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
- [An accurate car counting in aerial images based on convolutional neural networks](https://link.springer.com/content/pdf/10.1007/s12652-021-03377-5.pdf)
- [IoT Based Smart Parking System Using Deep Long Short Memory Network](https://www.mdpi.com/2079-9292/9/10/1696/htm)
---
Thanks for Listening
{"metaMigratedAt":"2023-06-17T11:09:42.649Z","metaMigratedFrom":"YAML","title":"2022 IOT Project","breaks":true,"slideOptions":"{\"theme\":\"black\",\"transition\":\"slide\",\"parallaxBackgroundImage\":\"https://i.imgur.com/nU5jeNV.jpg\",\"parallaxBackgroundHorizontal\":150,\"parallaxBackgroundVertical\":150}","contributors":"[{\"id\":\"82312475-ca00-4da2-84bb-df83a1683d50\",\"add\":2105,\"del\":2126},{\"id\":\"228ebc84-0eff-49ea-93d9-0651e55cd464\",\"add\":8170,\"del\":4080}]"}