``` fold 0 model: text_cnn_best_99.7172859450727_LR0.001_BATCH100_EPOCH100 Test data(20%) test fold data: 1196 0.0 507 1.0 290 3.0 256 4.0 84 2.0 57 5.0 2 Predict 0 1 2 3 4 5 6 All label 0.0 495 6 1 3 0 1 1 507 1.0 109 163 0 8 5 1 4 290 2.0 7 3 16 1 0 0 30 57 3.0 33 8 0 202 1 2 10 256 4.0 18 7 3 5 31 0 20 84 5.0 1 0 0 0 0 0 1 2 All 663 187 20 219 37 4 66 1196 fold 0 20%_Accuracy 0.8135451505016722 fold 0 20%_Error amount: 223 / 1196 Test data(80%) test fold data: 4782 0.0 1814 1.0 1293 3.0 1100 4.0 329 2.0 242 5.0 3 Name: label, dtype: int64 4782it [01:59, 40.14it/s] Predict 0 1 2 3 4 5 6 All label 0.0 1793 15 0 3 0 1 2 1814 1.0 38 1146 1 74 0 3 31 1293 2.0 22 3 92 0 10 0 115 242 3.0 14 13 0 1033 1 4 35 1100 4.0 8 1 2 21 243 0 54 329 5.0 2 0 0 0 0 0 1 3 All 1877 1178 95 1131 254 8 238 4781 fold 0 80%_Accuracy 0.9504391468005019 fold 0 80%_Error amount: 237 / 4782 ``` ``` add train amount: 1696 remove amount: 806 train_merge fold data: 61872 0.0 51956 1.0 3523 3.0 2952 4.0 2270 2.0 662 5.0 509 fold 1 model:text_cnn_best_99.80775444264944_LR0.001_BATCH100_EPOCH100 Test data(20%) test fold data: 1196 0.0 447 1.0 339 3.0 260 4.0 90 2.0 58 5.0 1 Predict 0 1 2 3 4 5 6 All label 0.0 441 4 0 2 0 0 0 447 1.0 132 179 0 15 1 4 8 339 2.0 12 2 13 0 0 0 31 58 3.0 43 5 3 193 0 5 11 260 4.0 26 1 5 6 35 0 17 90 5.0 1 0 0 0 0 0 0 1 All 655 191 21 216 36 9 67 1195 fold 1 20%_Accuracy 0.7759197324414716 fold 1 20%_Error amount: 268 / 1196 Test data(80%) test fold data: 4782 0.0 1874 1.0 1244 3.0 1096 4.0 323 2.0 241 5.0 4 Name: label, dtype: int64 4782it [01:58, 40.50it/s] Predict 0 1 2 3 4 5 6 All label 0.0 1854 12 0 3 0 2 3 1874 1.0 27 1112 1 73 0 4 27 1244 2.0 13 4 103 0 7 0 114 241 3.0 11 10 0 1031 2 8 34 1096 4.0 7 0 1 18 240 0 57 323 5.0 2 0 0 0 0 0 2 4 All 1914 1138 105 1125 249 14 237 4782 fold 1 80%_Accuracy 0.9571309075700544 fold 1 80%_Error amount: 205 / 4782 ``` ``` add train amount: 1657 remove amount: 773 train_merge fold data: 61866 0.0 51930 1.0 3523 3.0 2947 4.0 2299 2.0 658 5.0 508 dtype: int64 fold 2 model :text_cnn_best_99.65589660743134_LR0.001_BATCH100_EPOCH100 Test data(20%) test fold data: 1196 0.0 471 1.0 328 3.0 275 2.0 62 4.0 60 Predict 0 1 2 3 4 5 6 All label 0.0 459 5 0 4 2 1 0 471 1.0 140 150 3 12 15 2 6 328 2.0 8 0 19 0 3 0 32 62 3.0 33 5 3 203 12 7 12 275 4.0 13 1 0 5 31 0 10 60 All 653 161 25 224 63 10 60 1196 fold 2 20%_Accuracy 0.7709030100334449 fold 2 20%_Error amount: 274 / 1196 Test data(80%) test fold data: 4782 0.0 1850 1.0 1255 3.0 1081 4.0 353 2.0 237 5.0 5 Predict 0 1 2 3 4 5 6 All label 0.0 1824 15 0 6 0 2 3 1850 1.0 30 1111 0 75 5 5 29 1255 2.0 11 6 99 0 7 1 113 237 3.0 13 12 0 1015 4 4 33 1081 4.0 7 0 2 21 259 0 64 353 5.0 3 0 0 0 0 0 2 5 All 1888 1144 101 1117 275 12 244 4781 fold 2 80%_Accuracy 0.9519029694688415 fold 2 80%_Error amount: 230 / 4782 ``` ``` add train amount: 1678 remove amount: 799 train_merge fold data: 61861 0.0 51946 1.0 3543 3.0 2928 4.0 2277 2.0 657 5.0 509 fold 3 model :text_cnn_best_99.78352180936996_LR0.001_BATCH100_EPOCH100 Test data(20%) test fold data: 1195 0.0 453 1.0 311 3.0 284 4.0 83 2.0 63 5.0 1 Predict 0 1 2 3 4 5 6 All label 0.0 441 9 0 0 1 2 0 453 1.0 135 144 2 17 5 1 7 311 2.0 9 1 23 0 3 0 27 63 3.0 41 8 0 225 0 5 5 284 4.0 20 2 2 9 37 0 13 83 5.0 1 0 0 0 0 0 0 1 All 647 164 27 251 46 8 52 1195 fold 3 20%_Accuracy 0.7715481171548118 fold 3 20%_Error amount: 273 / 1195 Test data(80%) test fold data: 4783 0.0 1868 1.0 1272 3.0 1072 4.0 330 2.0 236 5.0 4 Predict 0 1 2 3 4 5 6 All label 0.0 1836 21 0 7 0 1 3 1868 1.0 30 1132 1 75 0 6 28 1272 2.0 17 5 89 0 7 0 118 236 3.0 8 13 0 1006 2 3 40 1072 4.0 7 0 1 16 245 0 61 330 5.0 2 0 0 0 0 0 2 4 All 1900 1171 91 1104 254 10 252 4782 fold 3 80%_Accuracy 0.9533765419192975 fold 3 80%_Error amount: 223 / 4783 ``` ``` 4 embedding add train amount: 1677 remove amount: 794 train_merge fold data: 61865 0.0 51956 1.0 3535 3.0 2937 4.0 2261 2.0 666 5.0 509 fold 4 model :text_cnn_best_99.77705977382875_LR0.001_BATCH100_EPOCH100 Test data(20%) test fold data: 1195 0.0 443 1.0 315 3.0 281 4.0 96 2.0 59 5.0 1 Predict 0 1 2 3 4 5 6 All label 0.0 431 7 0 3 0 0 2 443 1.0 129 162 0 12 1 1 10 315 2.0 9 0 23 0 2 0 25 59 3.0 44 7 0 219 1 3 7 281 4.0 24 3 3 10 41 1 14 96 5.0 0 0 0 0 0 0 1 1 All 637 179 26 244 45 5 59 1195 fold 4 20%_Accuracy 0.7824267782426778 fold 4 20%_Error amount: 260 / 1195 Test data(80%) test fold data: 4783 0.0 1878 1.0 1268 3.0 1075 4.0 317 2.0 240 5.0 4 Predict 0 1 2 3 4 5 6 All label 0.0 1858 12 0 4 0 3 1 1878 1.0 43 1123 1 71 1 4 25 1268 2.0 17 6 90 0 7 0 120 240 3.0 14 12 0 1003 1 7 38 1075 4.0 6 1 2 15 233 0 60 317 5.0 3 0 0 0 0 0 1 4 All 1941 1154 93 1093 242 14 245 4782 fold 4 80%_Accuracy 0.9517039514948777 fold 4 80%_Error amount: 231 / 4783 ``` ## 不斷詞 ``` Test data(20%) Predict 0 1 2 3 4 5 All label 0.0 485 10 1 7 1 3 507 1.0 118 155 0 10 5 0 288 2.0 18 3 28 2 5 1 57 3.0 35 7 1 210 3 0 256 4.0 18 8 3 8 47 0 84 5.0 2 0 0 0 0 0 2 All 676 183 33 237 61 4 1194 fold 0 20%_Accuracy: 0.7747068676716918 fold 0 20%_Error amount: 269 / 1194 Test data(80%) Predict 0 1 2 3 4 5 All label 0.0 1770 16 0 17 8 3 1814 1.0 24 1176 1 83 1 2 1287 2.0 2 1 228 0 10 1 242 3.0 6 8 0 1079 2 1 1096 4.0 2 0 2 22 303 0 329 5.0 0 0 0 0 0 3 3 All 1804 1201 231 1201 324 10 4771 fold 0 80%_Accuracy 0.9553646269907795 fold 0 80%_Error amount: 213 / 4772 ``` ``` Test data(20%) Predict 0 1 2 3 4 5 All label 0.0 441 2 2 2 0 0 447 1.0 143 173 0 20 1 2 339 2.0 19 1 28 3 6 1 58 3.0 49 5 4 194 0 5 257 4.0 27 2 8 6 47 0 90 5.0 0 1 0 0 0 0 1 All 679 184 42 225 54 8 1192 fold 1 20%_Accuracy: 0.7401508801341157 fold 1 20%_Error amount: 310 / 1193 Test data(80%) Predict 0 1 2 3 4 5 All label 0.0 1852 8 1 6 5 2 1874 1.0 24 1139 1 70 0 2 1236 2.0 2 0 229 0 10 0 241 3.0 5 6 0 1082 2 0 1095 4.0 0 0 1 19 303 0 323 5.0 0 0 0 0 0 4 4 All 1883 1153 232 1177 320 8 4773 fold 1 80%_Accuracy 0.9656400586633145 fold 1 80%_Error amount: 164 / 4773 ``` ``` Test data(20%) Predict 0 1 2 3 4 5 All label 0.0 456 3 2 8 1 1 471 1.0 146 143 5 11 17 2 324 2.0 21 0 27 5 7 2 62 3.0 36 4 4 209 14 7 274 4.0 14 1 0 8 37 0 60 All 673 151 38 241 76 12 1191 fold 2 20%_Accuracy: 0.7321578505457599 fold 2 20%_Error amount: 319 / 1191 Test data(80%) Predict 0 1 2 3 4 5 All label 0.0 1824 4 1 13 5 3 1850 1.0 23 1144 0 79 5 0 1251 2.0 4 1 220 1 10 1 237 3.0 9 6 0 1057 5 1 1078 4.0 1 0 2 21 329 0 353 5.0 0 0 0 0 0 5 5 All 1861 1155 223 1171 354 10 4774 fold 2 80%_Accuracy 0.9589528795811518 fold 2 80%_Error amount: 196 / 4775 ``` ``` Test data(20%) Predict 0 1 2 3 4 5 All label 0.0 444 2 0 1 5 1 453 1.0 137 146 2 19 5 0 309 2.0 13 0 43 2 5 0 63 3.0 41 6 1 234 0 2 284 4.0 23 2 2 9 46 1 83 5.0 0 0 0 0 0 1 1 All 658 156 48 265 61 5 1193 fold 3 20%_Accuracy: 0.7661357921207042 fold 3 20%_Error amount: 279 / 1193 Test data(80%) 48it [00:00, 99.58it/s] Predict 0 1 2 3 4 5 All label 0.0 1836 11 1 6 12 2 1868 1.0 25 1156 1 79 2 3 1266 2.0 1 0 224 0 11 0 236 3.0 5 7 0 1053 2 1 1068 4.0 0 0 1 18 311 0 330 5.0 0 0 0 2 0 2 4 All 1867 1174 227 1158 338 8 4772 fold 3 80%_Accuracy 0.9599832390530065 fold 3 80%_Error amount: 191 / 4773 ``` ``` Test data(20%) Predict 0 1 2 3 4 5 All label 0.0 438 4 1 0 0 0 443 1.0 138 159 0 15 1 2 315 2.0 23 0 28 0 6 2 59 3.0 46 5 0 224 2 4 281 4.0 22 3 5 13 51 2 96 5.0 0 0 0 1 0 0 1 All 667 171 34 253 60 10 1195 fold 4 20%_Accuracy: 0.7531380753138075 fold 4 20%_Error amount: 295 / 1195 Test data(80%) Predict 0 1 2 3 4 5 All label 0.0 1867 5 1 3 0 2 1878 1.0 33 1144 1 80 0 2 1260 2.0 3 0 230 0 7 0 240 3.0 6 7 0 1057 1 0 1071 4.0 0 0 2 14 301 0 317 5.0 0 0 0 0 0 4 4 All 1909 1156 234 1154 309 8 4770 fold 4 80%_Accuracy 0.9647872563403899 fold 4 80%_Error amount: 168 / 4771 ```
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up