# Final_version_with_pinyin_detct 速度
## 20210322
+ **OS:** Ubuntu
+ **CPU:** i7-6700k
+ **GPU:** Nvidia GTX 970
+ **RAM:** 16G
+ **Time:** 23:58:53~00:07:45
```
$ python3 batch_analysis.py
Preprocessing pinyin label file...
Pinyin preprocess: 0it [00:00, ?it/s]batch_analysis.py:144: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
to_pinyin['pinyin'][i] = str(pinyin(row['pinyin'], style=Style.TONE3, heteronym=False))
Pinyin preprocess: 42150it [00:11, 3773.32it/s]
dataset amount after removing official messages: 2231899
Decoding Message: 9987it [00:00, 31647.10it/s]
dataset need decode:1037/9987
Detecting account: 9987it [00:03, 2509.92it/s]
dataset containing account:424/9987
Determining language: 9987it [00:21, 463.36it/s]
device State: cuda:0
Loading jieba user dictionary...
Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
Loading model cost 0.445 seconds.
Prefix dict has been built successfully.
/home/d4bu/.local/lib/python3.8/site-packages/transformers/configuration_xlnet.py:205: FutureWarning: This config doesn't use attention memories, a core feature of XLNet. Consider setting `mem_len` to a non-zero value, for example `xlnet = XLNetLMHeadModel.from_pretrained('xlnet-base-cased'', mem_len=1024)`, for accurate training performance as well as an order of magnitude faster inference. Starting from version 3.5.0, the default parameter will be 1024, following the implementation in https://arxiv.org/abs/1906.08237
warnings.warn(
Loading textcnn zh-model...
Predicting zh-message label, detecting rule-based word, detecting pinyin: 4480it [06:48, 10.96it/s]
Loading textcnn en-model...
Predicting en-message label, detecting rule-based word: 1416it [01:08, 20.74it/s]
dataset containing rule-based: 1169 / 9987
result save at: message_predict_result/test_2019_Nov_Data_210322_0007.csv
(pinyin fix label) result save at: message_predict_result/test_2019_Nov_Data_fix_labels_210322_0007.csv
```