```
涉政 spend time: 157.54228496551514
Predict 0 1 2 3 5 All
label
1 22 1350 42 242 80 1736
All 22 1350 42 242 80 1736
Accuracy: 0.7776497695852534
Error amount: 386 / 1736
dataset amount after removing official messages: 5287
dataset amount after removing duplicate messages: 299
C:\Python38\lib\site-packages\transformers\configuration_xlnet.py:205: FutureWarning: This config doesn't use attention memories, a core feature of XLNet. Consider setting `men_len` to a non-zero value, for example `xlnet = XLNetLMHeadModel.from_pretrained('xlnet-base-cased'', mem_len=1024)`, for accurate training performance as well as an order of magnitude faster inference. Starting from version 3.5.0, the default parameter will be 1024, following the implementation in https://arxiv.org/abs/1906.08237
warnings.warn(
辱罵 spend time: 28.961681127548218
Predict 0 1 2 3 4 5 All
label
2 10 3 254 1 9 22 299
All 10 3 254 1 9 22 299
Accuracy: 0.8494983277591973
Error amount: 45 / 299
dataset amount after removing official messages: 1183
dataset amount after removing duplicate messages: 1181
C:\Python38\lib\site-packages\transformers\configuration_xlnet.py:205: FutureWarning: This config doesn't use attention memories, a core feature of XLNet. Consider setting `men_len` to a non-zero value, for example `xlnet = XLNetLMHeadModel.from_pretrained('xlnet-base-cased'', mem_len=1024)`, for accurate training performance as well as an order of magnitude faster inference. Starting from version 3.5.0, the default parameter will be 1024, following the implementation in https://arxiv.org/abs/1906.08237
warnings.warn(
違禁 spend time: 111.92304039001465
Predict 0 1 2 3 4 5 All
label
3 6 10 30 1052 2 81 1181
All 6 10 30 1052 2 81 1181
Accuracy: 0.890770533446232
Error amount: 129 / 1181
dataset amount after removing official messages: 415
dataset amount after removing duplicate messages: 415
C:\Python38\lib\site-packages\transformers\configuration_xlnet.py:205: FutureWarning: This config doesn't use attention memories, a core feature of XLNet. Consider setting `men_len` to a non-zero value, for example `xlnet = XLNetLMHeadModel.from_pretrained('xlnet-base-cased'', mem_len=1024)`, for accurate training performance as well as an order of magnitude faster inference. Starting from version 3.5.0, the default parameter will be 1024, following the implementation in https://arxiv.org/abs/1906.08237
warnings.warn(
色情 spend time: 46.245901346206665
Predict 0 2 3 4 5 All
label
4 6 27 22 336 24 415
All 6 27 22 336 24 415
Accuracy: 0.8096385542168675
Error amount: 79 / 415
dataset amount after removing official messages: 10000
dataset amount after removing duplicate messages: 5786
C:\Python38\lib\site-packages\transformers\configuration_xlnet.py:205: FutureWarning: This config doesn't use attention memories, a core feature of XLNet. Consider setting `men_len` to a non-zero value, for example `xlnet = XLNetLMHeadModel.from_pretrained('xlnet-base-cased'', mem_len=1024)`, for accurate training performance as well as an order of magnitude faster inference. Starting from version 3.5.0, the default parameter will be 1024, following the implementation in https://arxiv.org/abs/1906.08237
warnings.warn(
廣告 spend time: 16.618953704833984
Predict 0 2 4 5 All
label
5 23 3 1 5759 5786
All 23 3 1 5759 5786
Accuracy: 0.9953335637746284
Error amount: 27 / 5786
```
侯勇 ¹⁵¹⁵⁴⁹⁶⁹⁵⁸⁸
任益波新号码:180-5142-8688
小ゝ博℡
纯手工生姜洗护(招代理)
润帆🚗行¹⁸³⁸⁷⁵⁵⁴²²¹
润帆🚗行¹³⁶²⁸⁸⁷⁷⁶⁶⁹
郭超℡¹⁸²²⁹⁸²⁰⁵⁰⁰
A隋光耀℡₁₅₅₂₆₆₀₅₃₆₃
张彦辉¹³³³³⁷³³⁶⁵⁶
185 2102 1537
西西包包饰品号(招代理)
绽放传媒-招主播(电🚬)
李磊¹³⁷⁷⁴⁴¹²³⁴⁵
顺丰钟翔℡¹⁵⁷²⁷⁷⁰³¹⁹⁹
YZ₁₈₆₃₇₆₇₇₃₆₇
毛海一℡¹⁶⁶⁰⁰²⁷²⁶⁶⁶
胡阳℡¹⁸⁸⁷⁰²⁶⁸³⁴³
A5.🇨🇳
发爵造型公众号
王建一℡¹⁸⁶⁴⁶⁰⁰⁹³⁹⁸
℡孟₁₈₀₅₄₅₄₅₅₈₈
13414628999
A谢老师℡¹⁸⁵⁴³⁴²⁷⁷⁷²
```
```