# CS224W: Machine learning with graphs ## Lecture 1 ### Lecture 1.1 This lecture covers the motivation of the graphs. ### Lecture 1.2 - Applications of Graph ML ### Lecture 1.3 - Choice of Graph Representation​ ![](https://i.imgur.com/oVTC5Jx.png) ![](https://i.imgur.com/Bquwktu.png) ![](https://i.imgur.com/SbeGjm1.png) ![](https://i.imgur.com/EmSLHum.png) ![](https://i.imgur.com/4h5ljiE.png) ![](https://i.imgur.com/dIuZbf0.png) ![](https://i.imgur.com/mNNKB4A.png) ![](https://i.imgur.com/oZU5YQ6.png) ## Lecture 2 ### Lecture 2.1 - Traditional Feature-based Methods: Node ![](https://i.imgur.com/PxSN1EE.png) ![](https://i.imgur.com/AsOkCen.png) ![](https://i.imgur.com/wgJKNBI.png) ![](https://i.imgur.com/ymLzOXr.png) ![](https://i.imgur.com/o6N4Q6j.png) ![](https://i.imgur.com/4HNYX7q.png) ![](https://i.imgur.com/DryBBLK.png) ![](https://i.imgur.com/QkXMuUg.png) ![](https://i.imgur.com/nfCPZrs.png) ### Lecture 2.2 - Traditional Feature-based Methods: Link ![](https://i.imgur.com/WzTm2Dp.png) ![](https://i.imgur.com/uOKiMJG.png) ![](https://i.imgur.com/I4VH0Dr.png) ![](https://i.imgur.com/fYU1nbg.png) ![](https://i.imgur.com/pBpG8Lg.png) ![](https://i.imgur.com/lH5M7ZR.png) ![](https://i.imgur.com/WRQ4e9b.png) ![](https://i.imgur.com/aYTnT0s.png) ![](https://i.imgur.com/XvDdQ52.png) ### Lecture 2.3 - Traditional Feature-based Methods: Graph ![](https://i.imgur.com/HNsllWz.png) ![](https://i.imgur.com/X0OKCkN.png) ![](https://i.imgur.com/CjVuKP1.png) ![](https://i.imgur.com/38YIQvH.png) ![](https://i.imgur.com/uATSac5.png) ![](https://i.imgur.com/Zc7Covn.png) ![](https://i.imgur.com/2fWnByU.png) ![](https://i.imgur.com/qSeE3pD.png) ## Lecture 3 ### Lecture 3.1 - Node Embeddings ![](https://i.imgur.com/2LIk7Rd.png) ![](https://i.imgur.com/Z7ZUFyj.png) ![](https://i.imgur.com/13Ky9NW.png) ![](https://i.imgur.com/oIcxfUF.png) ![](https://i.imgur.com/YjQ6bSN.png) ![](https://i.imgur.com/f3cQBSO.png) ![](https://i.imgur.com/LJsTVWw.png) ### Lecture 3.2-Random Walk Approaches for Node Embeddings ![](https://i.imgur.com/hlVsdr0.png) ![](https://i.imgur.com/cQGQktd.png) ![](https://i.imgur.com/sASwmKE.png) ![](https://i.imgur.com/dKnocmr.png) ![](https://i.imgur.com/d9FzTQC.png) ![](https://i.imgur.com/6amIWDo.png) ![](https://i.imgur.com/4f7hdOu.png) ![](https://i.imgur.com/vFSaRpo.png) ![](https://i.imgur.com/TiE7VoV.png) ![](https://i.imgur.com/egR9tzf.png) ![](https://i.imgur.com/Bj0wjY5.png) ![](https://i.imgur.com/KZevHfn.png) ![](https://i.imgur.com/H7ynHog.png) ### Lecture 3.3 - Embedding Entire Graphs ![](https://i.imgur.com/YcRvQuI.png) ![](https://i.imgur.com/ZVvrHnV.png) ![](https://i.imgur.com/eXE2auY.png) ![](https://i.imgur.com/ERaD0B0.png) ![](https://i.imgur.com/D5pjWWL.png) ![](https://i.imgur.com/ABV1r8I.png) ![](https://i.imgur.com/ilgsO0a.png) ![](https://i.imgur.com/JSQNVFq.png) ![](https://i.imgur.com/K64H7dM.png) ![](https://i.imgur.com/294jwpp.png) ![](https://i.imgur.com/RyIrEKv.png) ## Lecture 4 ### Lecture 4.1 - PageRank ![](https://i.imgur.com/ONUeoh0.png) ![](https://i.imgur.com/k4He508.png) ![](https://i.imgur.com/gqo5Ay8.png) ![](https://i.imgur.com/fcbH9eD.png) ![](https://i.imgur.com/Tu8gr00.png) ![](https://i.imgur.com/bxZz9VT.png) ![](https://i.imgur.com/8qWLISi.png) ![](https://i.imgur.com/Yp1xeIJ.png) ![](https://i.imgur.com/TeYKgf8.png) ### Lecture 4.2 - PageRank: How to Solve? ![](https://i.imgur.com/lIWVBvp.png) ![](https://i.imgur.com/CyVUh5G.png) ![](https://i.imgur.com/uPToRxB.png) ![](https://i.imgur.com/Z9x9ApP.png) ![](https://i.imgur.com/qUyIGoB.png) ![](https://i.imgur.com/bE7F91E.png) ![](https://i.imgur.com/uQMSNea.png) ### Lecture 4.3 - Random Walk with Restarts ![](https://i.imgur.com/HkRumMT.png) ![](https://i.imgur.com/XXxQ4jP.png) ![](https://i.imgur.com/4beQTJ1.png) ![](https://i.imgur.com/9l3g7CD.png) ![](https://i.imgur.com/Ab8va2K.png) ### Lecture 4.4 - Matrix Factorization and Node Embeddings ![](https://i.imgur.com/lSzkCFY.png) ![](https://i.imgur.com/eGokH2s.png) ![](https://i.imgur.com/18ALNRM.png) ![](https://i.imgur.com/9UILCIa.png) ![](https://i.imgur.com/j7Ijl70.png) ![](https://i.imgur.com/SA1Pxkc.png) ![](https://i.imgur.com/ZEWMXxL.png) ![](https://i.imgur.com/n0uQSN0.png) ![](https://i.imgur.com/M3fGVpx.png) ![](https://i.imgur.com/PJnBw1m.png) ## Lecture 5 ### Lecture 5.1 - Message passing and Node Classification ![](https://i.imgur.com/yFMgC2J.png) ![](https://i.imgur.com/tGtLeJW.png) ![](https://i.imgur.com/tCSxVoN.png) ![](https://i.imgur.com/3LNoVfc.png) ![](https://i.imgur.com/AI2Tdg5.png) ![](https://i.imgur.com/nHri858.png) ### Lecture 5.2 - Relational and Iterative Classification ![](https://i.imgur.com/Knv4DjG.png) ![](https://i.imgur.com/3CAYfzw.png) ![](https://i.imgur.com/5gr2xIL.png) ![](https://i.imgur.com/ZH8Z54c.png) ![](https://i.imgur.com/P921M3S.png) ![](https://i.imgur.com/1iiNiJf.png) ![](https://i.imgur.com/nxtt6t1.png) ![](https://i.imgur.com/7gZYFlx.png) ![](https://i.imgur.com/LMQRrWU.png) ### Lecture 5.3 - Collective Classification ![](https://i.imgur.com/LMLKugm.png) ![](https://i.imgur.com/E71FFtV.png) ![](https://i.imgur.com/ANfNmaX.png) ![](https://i.imgur.com/9QfzMMC.png) ![](https://i.imgur.com/tImWjsc.png) ![](https://i.imgur.com/BQ5F4JK.png) ![](https://i.imgur.com/S5yGqud.png) ## Lecture 6 ### Lecture 6.1 - Introduction to Graph Neural Networks ![](https://i.imgur.com/a4JavdO.png) ![](https://i.imgur.com/u2RWIKq.png) ![](https://i.imgur.com/N664z7h.png) ![](https://i.imgur.com/cYBlCoq.png) ### Lecture 6.2 - Basics of Deep Learning ![](https://i.imgur.com/XYJXg77.png) ![](https://i.imgur.com/qXuogGt.png) ![](https://i.imgur.com/B0frKUN.png) ![](https://i.imgur.com/Y20H6UT.png) ![](https://i.imgur.com/dK0I2ZA.png) ### Lecture 6.3 - Deep Learning for Graphs ![](https://i.imgur.com/E2RmSeg.png) ![](https://i.imgur.com/lZAegf3.png) ![](https://i.imgur.com/oiyFSPB.png) ![](https://i.imgur.com/kwlxMrC.png) ![](https://i.imgur.com/kgzWvUk.png) ![](https://i.imgur.com/hfthGgy.png) ![](https://i.imgur.com/TrIMg1A.png) ![](https://i.imgur.com/9wo8LS7.png) ![](https://i.imgur.com/4hDXf8q.png) ![](https://i.imgur.com/JTfAEkQ.png) ## Lecture 7 ### Lecture 7.1 - A general Perspective on GNNs ![](https://i.imgur.com/yuw3Bzj.png) ![](https://i.imgur.com/GXT1abv.png) ![](https://i.imgur.com/9YMjPS2.png) ### Lecture 7.2 - A Single Layer of a GNN ![](https://i.imgur.com/LbvhqWj.png) ![](https://i.imgur.com/0q2gWdV.png) ![](https://i.imgur.com/mWHk2Jn.png) ![](https://i.imgur.com/svPquHo.png) ![](https://i.imgur.com/QHx4Xh6.png) ![](https://i.imgur.com/48Dtotw.png) ![](https://i.imgur.com/G9eQsOW.png) ![](https://i.imgur.com/95wZHHF.png) ![](https://i.imgur.com/chOFn1o.png) ![](https://i.imgur.com/mCUL62d.png) ![](https://i.imgur.com/RGCXSt8.png) ![](https://i.imgur.com/ANxDZ8O.png) ![](https://i.imgur.com/az8UM0S.png) ![](https://i.imgur.com/KuIYvWO.png) ![](https://i.imgur.com/8i7YPmc.png) ### Lecture 7.3 - Stacking layers of a GNN ![](https://i.imgur.com/h8KMgoy.png) ![](https://i.imgur.com/g8T9pHJ.jpg) ![](https://i.imgur.com/0bZxbQz.png) ![](https://i.imgur.com/5DjHF9F.png) ![](https://i.imgur.com/QGhD21i.png) ![](https://i.imgur.com/fQuwSqZ.png) ![](https://i.imgur.com/1MdD5xV.png) ![](https://i.imgur.com/v9zNLRV.png) ![](https://i.imgur.com/OhJHxtp.png) ![](https://i.imgur.com/EhTXuie.png) ![](https://i.imgur.com/zX1Sgg9.png) ## Lecture 8 ### Lecture 8.1 - Graph Augmentation for GNNs ![](https://i.imgur.com/acEBI0R.png) ![](https://i.imgur.com/kcjamoF.png) ![](https://i.imgur.com/iVhRG11.png) ![](https://i.imgur.com/mESt2Yv.png) ![](https://i.imgur.com/XPA42PK.png) ![](https://i.imgur.com/bCVFiW5.png) ![](https://i.imgur.com/IHJP595.png) ![](https://i.imgur.com/kYE1m70.png) ![](https://i.imgur.com/2Q3knnU.png) ![](https://i.imgur.com/oWBecAZ.png) ### Lecture 8.2 - Training Graph Neural Networks ![](https://i.imgur.com/myDP5X9.png) ![](https://i.imgur.com/lQN2FNJ.png) ![](https://i.imgur.com/waz0Jxn.png) ![](https://i.imgur.com/Mnrr1d6.png) ![](https://i.imgur.com/GYutcwy.png) ![](https://i.imgur.com/heqMo4U.png) ![](https://i.imgur.com/J9VoKAK.png) ![](https://i.imgur.com/ravTuMa.png) ![](https://i.imgur.com/Aa5fobY.png) ![](https://i.imgur.com/zOxYp63.png) ![](https://i.imgur.com/G5cPPGp.png) ![](https://i.imgur.com/sF7fUN2.png) ### Lecture 8.3 - Setting up GNN Prediction Tasks ![](https://i.imgur.com/i8THFxl.png) ![](https://i.imgur.com/PsGAa8F.png) ![](https://i.imgur.com/eREn70R.png) ![](https://i.imgur.com/DvNbmaa.png) ![](https://i.imgur.com/ubkqfXL.png) ![](https://i.imgur.com/s1kHUzA.png) ## Lecture 9 ### Lecture 9.1 - How Expressive are Graph Neural Networks ![](https://i.imgur.com/SRORIiv.png) ![](https://i.imgur.com/QxP8PRh.png) ![](https://i.imgur.com/wIByYwC.png) ![](https://i.imgur.com/t599OH8.png) ![](https://i.imgur.com/1UPBLWE.png) ![](https://i.imgur.com/i3szzbd.png) ![](https://i.imgur.com/aAmyn61.png) ![](https://i.imgur.com/4TlYaty.png) ![](https://i.imgur.com/ljG4XGh.png) ![](https://i.imgur.com/vEjwtVr.png) ![](https://i.imgur.com/NwdBpwx.png) ### Lecture 9.2 - Designing the Most Powerful GNNs ![](https://i.imgur.com/8aFxkbR.png) ![](https://i.imgur.com/S5vaNVc.png) ![](https://i.imgur.com/oJ5px9M.png) assuming its one hot vector ![](https://i.imgur.com/JcgzIoJ.png) ![](https://i.imgur.com/5iXpEj9.png) ![](https://i.imgur.com/8pbl0DZ.png) ![](https://i.imgur.com/EC1bQBB.png) ![](https://i.imgur.com/69XR0MJ.png) ![](https://i.imgur.com/UCedZIc.png) ![](https://i.imgur.com/xc05Rua.png) ![](https://i.imgur.com/rmIWbhq.png) ![](https://i.imgur.com/Sn4oBxA.png) ![](https://i.imgur.com/tiW7lfK.png) ![](https://i.imgur.com/SuveiK4.png) ![](https://i.imgur.com/jWaFdi4.png) ![](https://i.imgur.com/IZseFIK.png) ![](https://i.imgur.com/Q2qp4FX.png) ![](https://i.imgur.com/xUjRTwr.png) ![](https://i.imgur.com/FM5kODU.png) ![](https://i.imgur.com/o9438il.png) ![](https://i.imgur.com/faIuzrw.png) ![](https://i.imgur.com/w5gCNay.png) ![](https://i.imgur.com/oSku87p.png) ## Lecture 10 ### Lecture 10.1-Heterogeneous & Knowledge Graph Embedding ![](https://i.imgur.com/h1fu3Xx.png) ![](https://i.imgur.com/jQoGx5R.png) ![](https://i.imgur.com/t7J3FbL.png) ![](https://i.imgur.com/EpqpUTm.png) ![](https://i.imgur.com/3gPdL78.png) ![](https://i.imgur.com/0y9BAXt.png) ![](https://i.imgur.com/3X2U2Wi.png) ![](https://i.imgur.com/zjN0PMp.png) ![](https://i.imgur.com/zUJ9Y01.png) ![](https://i.imgur.com/12X0r66.png) ![](https://i.imgur.com/yOoZwxE.png) ![](https://i.imgur.com/fcROExc.png) ![](https://i.imgur.com/FFekucF.png) ![](https://i.imgur.com/WdGt5OO.png) ![](https://i.imgur.com/Ozfz01C.png) ### Lecture 10.2 - Knowledge Graph Completion ### Lecture 10.3 - Knowledge Graph Completion Algorithms ![](https://i.imgur.com/YLeRxBR.png) ![](https://i.imgur.com/xOZA9OV.png) ![](https://i.imgur.com/m4SnD05.png) ![](https://i.imgur.com/TIHeNId.png) ![](https://i.imgur.com/KY3TBRX.png) ![](https://i.imgur.com/htNhIsv.png) ![](https://i.imgur.com/lIszO8N.png) ![](https://i.imgur.com/xgfq9sJ.png) ![](https://i.imgur.com/E2DCyiz.png) ![](https://i.imgur.com/6VnCazu.png) ![](https://i.imgur.com/RfoUgzS.png) ![](https://i.imgur.com/baSxYNW.png) ![](https://i.imgur.com/amrGP3v.png) ![](https://i.imgur.com/zJ9WVzS.png) ![](https://i.imgur.com/WZxLbia.png) ![](https://i.imgur.com/Dq7JWEC.png) ![](https://i.imgur.com/InvyMzz.png) ![](https://i.imgur.com/9D7A0aY.png) ![](https://i.imgur.com/xaa0Qw8.png) ![](https://i.imgur.com/SZyjz3F.png) ![](https://i.imgur.com/TUQBBhH.png) ![](https://i.imgur.com/jdISmS2.png) ![](https://i.imgur.com/hkXWFn2.png) ![](https://i.imgur.com/0YVN9rI.png) ![](https://i.imgur.com/DG3XSKV.png) ![](https://i.imgur.com/ZGQOtIi.png) ![](https://i.imgur.com/ZtpMYDd.png) ## Lecture 11 ### Lecture 11.1 - Reasoning in Knowledge Graphs ![](https://i.imgur.com/i8G4UjW.png) ![](https://i.imgur.com/UpMQiZ0.jpg) ![](https://i.imgur.com/IhGd4su.png) ![](https://i.imgur.com/U80Bjin.png) ![](https://i.imgur.com/ID0IRJO.png) ![](https://i.imgur.com/ZNIVNrN.png) ### Lecture 11.2 ### Lecture 11.3 - Query2box: Reasoning over KGs ![](https://i.imgur.com/YvzbxmR.png) ![](https://i.imgur.com/zoMoUWx.png) ![](https://i.imgur.com/Y1Hu27S.png) ![](https://i.imgur.com/gs6uzsO.png) ![](https://i.imgur.com/Y5bA5Bl.png) ![](https://i.imgur.com/0kUGpzn.png) ## Lecture 12 ### Lecture 12.1-Fast Neural Subgraph Matching & Counting ![](https://i.imgur.com/iTuBw79.png) ![](https://i.imgur.com/Frt4QGO.png) ![](https://i.imgur.com/Ewwg5jm.png) ![](https://i.imgur.com/FSL6fqG.png) ![](https://i.imgur.com/cEn3bm3.png) ![](https://i.imgur.com/FpYcRGl.png) ![](https://i.imgur.com/A0AzYQt.png) ![](https://i.imgur.com/dG8TYeU.png) ![](https://i.imgur.com/A1DHFJs.png) ![](https://i.imgur.com/kZtTuyq.png) ![](https://i.imgur.com/ljhj7Ln.png) ![](https://i.imgur.com/A7RqFeC.png) ### Lecture 12.2 - Neural Subgraph Matching ![](https://i.imgur.com/bf12iJe.png) ![](https://i.imgur.com/ZJY6uwk.png) ![](https://i.imgur.com/9MKqjm4.png) ![](https://i.imgur.com/H9ePaQU.png) ![](https://i.imgur.com/XvQ5Qtk.png) ![](https://i.imgur.com/0am39lV.png) ![](https://i.imgur.com/eQ7Zc7x.png) ![](https://i.imgur.com/mZNqx36.png) ![](https://i.imgur.com/QUXHHWA.png) ![](https://i.imgur.com/BSfPGL1.png) ### Lecture 12.3 - Finding Frequent Subgraphs ![](https://i.imgur.com/jOQTQOA.png) ![](https://i.imgur.com/A6JDsnp.png) ![](https://i.imgur.com/uMIhjr2.png) ![](https://i.imgur.com/DCxgvK8.png) ## Lecture 13 ### Lecture 13.1 - Community Detection in Networks ![](https://i.imgur.com/2ROkyoR.png) ![](https://i.imgur.com/8DSqjLA.png) ![](https://i.imgur.com/F3FOHaV.png) ![](https://i.imgur.com/GVRd7tX.png) ![](https://i.imgur.com/deh0Cj4.png) ![](https://i.imgur.com/XtwDGtG.png) ![](https://i.imgur.com/qikqwII.png) ![](https://i.imgur.com/a8s1z5n.png) ### Lecture 13.2 - Network Communities ![](https://i.imgur.com/kSxf9e9.png) ![](https://i.imgur.com/VXwyWlg.png) ![](https://i.imgur.com/EujJmfH.png) ![](https://i.imgur.com/Iwfkjor.png) ![](https://i.imgur.com/jqrYAqT.png) ### Lecture 13.3 - Louvain Algorithm ![](https://i.imgur.com/zMFZvV9.png) ![](https://i.imgur.com/QQL7hXt.png) ![](https://i.imgur.com/jiYIO5m.png) ![](https://i.imgur.com/uHZbova.png) ![](https://i.imgur.com/NtbJDVd.png) ### Lecture 13.4 - Detecting Overlapping Communities ![](https://i.imgur.com/41YOLpw.png) ![](https://i.imgur.com/ZrchZ3I.png) ![](https://i.imgur.com/YaoG0tG.png) ![](https://i.imgur.com/3kE332B.png) ![](https://i.imgur.com/zSVwMTI.png) ![](https://i.imgur.com/hJ4hZyf.png) ![](https://i.imgur.com/yL4L3uD.png) ![](https://i.imgur.com/pwvezjl.png) ![](https://i.imgur.com/IIdbcet.png) ![](https://i.imgur.com/n2dR87b.png) ## Lecture 14 ### Lecture 14.1 - Generative Models for Graphs ![](https://i.imgur.com/EX2dyiq.png) ![](https://i.imgur.com/jwzOsr9.png) ![](https://i.imgur.com/YzQXK42.png) ![](https://i.imgur.com/AZ5eKfE.png) ### Lecture 14.2 - Erdos Renyi Random Graphs ![](https://i.imgur.com/wTfRKUk.png) ![](https://i.imgur.com/cey2AHg.png) ![](https://i.imgur.com/w25LSD1.png) ![](https://i.imgur.com/MVH0lWw.png) ![](https://i.imgur.com/uQagzn9.png) ![](https://i.imgur.com/hkDZtLe.png) ![](https://i.imgur.com/XNYUPi2.png) ![](https://i.imgur.com/t66eG3s.png) ![](https://i.imgur.com/2f6RrdR.png) ![](https://i.imgur.com/edVEtjf.png) ### Lecture 14.3 - The Small World Model ![](https://i.imgur.com/w07EsYm.png) ![](https://i.imgur.com/9fBkj3F.png) ![](https://i.imgur.com/NlGDJlR.png) ![](https://i.imgur.com/ySjGlru.png) ### Lecture 14.4 - Kronecker Graph Model ![](https://i.imgur.com/hPOxnEW.png) ![](https://i.imgur.com/aZRYKud.png) ![](https://i.imgur.com/czSpg14.png) ![](https://i.imgur.com/sH0Vex3.png) ![](https://i.imgur.com/gqtGWtc.png) ![](https://i.imgur.com/u9342bc.png) ![](https://i.imgur.com/vtRIk46.png) ![](https://i.imgur.com/2rqOwfS.png) ## Lecture 15 ### Lecture 15.1 - Deep Generative Models for Graphs ![](https://i.imgur.com/qnYHgAc.png) ![](https://i.imgur.com/iQ5cIAc.png) ![](https://i.imgur.com/M9zJbRG.png) ![](https://i.imgur.com/moWn0Vw.png) ![](https://i.imgur.com/ZBEADXL.png) ### Lecture 15.2 - Graph RNN: Generating Realistic Graphs ![](https://i.imgur.com/gKMYC8P.png) ![](https://i.imgur.com/dbgDLqy.png) ![](https://i.imgur.com/DGlK1vK.png) ![](https://i.imgur.com/Hov8BFc.png) ![](https://i.imgur.com/Iq47CdR.png) ![](https://i.imgur.com/iTIy0EU.png) ![](https://i.imgur.com/Nooie8I.png) ### Lecture 15.3 - Scaling Up & Evaluating Graph Gen ![](https://i.imgur.com/7MjCyWJ.png) ![](https://i.imgur.com/9LBtPVu.png) ![](https://i.imgur.com/LpH5o9R.png) ![](https://i.imgur.com/FB4duMy.png) ![](https://i.imgur.com/49VjR3m.png) ### Lecture 15.4 - Applications of Deep Graph Generation ## Lecture 16 ### Lecture 16.1 - Limitations of Graph Neural Networks ![](https://i.imgur.com/0iaKUoJ.png) ![](https://i.imgur.com/jQJtyWs.png) ![](https://i.imgur.com/Hy44W4N.png) ![](https://i.imgur.com/HkfsN1v.png) ![](https://i.imgur.com/yVMrLDV.png) ![](https://i.imgur.com/dPiGGXI.png) ### Lecture 16.2 - Position-Aware Graph Neural Networks ![](https://i.imgur.com/vtTTDkK.png) ![](https://i.imgur.com/S8DkWVN.png) ![](https://i.imgur.com/Kls17St.png) ![](https://i.imgur.com/V3WJKpi.png) ![](https://i.imgur.com/9Ja8hPv.png) ![](https://i.imgur.com/urIacfD.png) ![](https://i.imgur.com/MLqSqnG.png) ### Lecture 16.3 - Identity-Aware Graph Neural Networks ![](https://i.imgur.com/JqDsbo2.png) ![](https://i.imgur.com/KEFNNK5.png) ![](https://i.imgur.com/DfwIoTj.png) ![](https://i.imgur.com/OdRfi29.png) ![](https://i.imgur.com/ryTNXZh.png) ![](https://i.imgur.com/o09pqKj.png) ![](https://i.imgur.com/aYMCZDc.png) ![](https://i.imgur.com/Yjg3UYy.png) ![](https://i.imgur.com/EHQVRhA.png) ### Lecture 16.4 - Robustness of Graph Neural Networks ![](https://i.imgur.com/YtglOSj.png) ![](https://i.imgur.com/r1hkxsO.png) ![](https://i.imgur.com/LVhcnvX.png) ![](https://i.imgur.com/t2Qbu1v.png) ![](https://i.imgur.com/d4RpKjt.png) ![](https://i.imgur.com/DLKXI5u.png) ![](https://i.imgur.com/Z6jAWEA.png) ![](https://i.imgur.com/AYPGnnn.png) ![](https://i.imgur.com/GDqpRWQ.png) ![](https://i.imgur.com/dHMEKD2.png) ![](https://i.imgur.com/aPhIijg.png) ## Lecture 17 ### Lecture 17.1 - Scaling up Graph Neural Networks ![](https://i.imgur.com/tdNRXo8.png) ![](https://i.imgur.com/kkdq6VK.png) ![](https://i.imgur.com/YT5sSxi.png) ### Lecture 17.2 - GraphSAGE Neighbor Sampling ![](https://i.imgur.com/Bnz5mMY.png) ![](https://i.imgur.com/bq7ME9Z.png) ![](https://i.imgur.com/gVzC5Xn.png) ![](https://i.imgur.com/0ywxBnH.png) ![](https://i.imgur.com/vg5bIoU.png) ![](https://i.imgur.com/2njn1CT.png) ### Lecture 17.3 - Cluster GCN: Scaling up GNNs ![](https://i.imgur.com/GIaef8G.png) ![](https://i.imgur.com/EHSHcBv.png) ![](https://i.imgur.com/MYuCJs7.png) ![](https://i.imgur.com/OjjbtTr.png) ![](https://i.imgur.com/hSWzAQP.png) ![](https://i.imgur.com/S2A4IhA.png) ![](https://i.imgur.com/BOt3O1g.png) ![](https://i.imgur.com/4nvL5R9.png) ![](https://i.imgur.com/g1isjVB.png) ![](https://i.imgur.com/JsVQZYH.png) ![](https://i.imgur.com/ckBgyu8.png) ### Lecture 17.4 - Scaling up by Simplifying GNNs ![](https://i.imgur.com/tLowAse.png) ![](https://i.imgur.com/XSUZlxy.png) ![](https://i.imgur.com/miXGLzy.png) ![](https://i.imgur.com/B5d8fgI.png) ![](https://i.imgur.com/CwQdiuZ.png) ![](https://i.imgur.com/1pXuknT.png) ![](https://i.imgur.com/IBU9dim.png)