第五章:靜態負載之破壞 (Failures Resulting from Static Loading) 本章重點討論靜態負載下的破壞機制及其預防方法,提供設計元件的安全指導。主要內容包括: 靜態強度分析:描述材料的靜態破壞特性。 應力集中效應:考慮幾何不連續對應力分佈的影響。 各種破壞理論:Maximum-Shear-Stress Theory、Distortion-Energy Theory、aximum-Normal-Stress Theory、Coulomb-Mohr Theory 設計安全係數:基於失效準則和應力分析選擇適當的安全係數。 斷裂力學:介紹裂紋起始與擴展的基本概念。 (課堂上勾選之第五章習題題目與詳解,僅供學生自學用途。) --- $\,$ ## Problem 5-1 A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 350 MPa. Using the distortion-energy and maximum-shear-stress theories determine the factors of safety for the following plane stress states: **中文翻譯**:一根具延性的熱軋鋼棒,其拉伸與壓縮的最低降伏強度為 350 MPa。使用畸變能量理論與最大剪應力理論來確定以下平面應力狀態的安全係數。 (a) $\sigma_x = 100 \; \text{MPa}, \sigma_y = 100 \; \text{MPa}$ (b) $\sigma_x = 100 \; \text{MPa}, \sigma_y = 50 \; \text{MPa}$ \(c) $\sigma_x = 100 \; \text{MPa}, \tau_{xy} = -75 \; \text{MPa}$ (d) $\sigma_x = -50 \; \text{MPa}, \sigma_y = -75 \; \text{MPa}, \tau_{xy} = -50 \; \text{MPa}$ (e) $\sigma_x = 100 \; \text{MPa}, \sigma_y = 20 \; \text{MPa}, \tau_{xy} = -20 \; \text{MPa}$ --- ### 計算過程 **已知條件:** $S_y = 350 \; \text{MPa}$ $\;$ #### Step 1. 條列題目敘述提及之兩種計算方法的公式 - **最大剪應力理論 (Maximum Shear Stress Theory, MSS)** $$ \sigma_1 - \sigma_3 = \frac{S_y}{n} \quad \Rightarrow \quad n = \frac{S_y}{(\sigma_1 - \sigma_3)} $$ - **畸變能量理論 (Distortion Energy Theory, DE)** $$ \sigma' = \Big[ (\sigma_1^2 - \sigma_1\sigma_2 + \sigma_2^2 + 3\tau_{xy}^2) \Big]^{1/2} \quad \Rightarrow \quad n = \frac{S_y}{\sigma'} $$ $\;$ #### Step 2. 計算指定應力狀態下的安全係數 1. $\sigma_1 = 100 \; \text{MPa}, \sigma_2 = 100 \; \text{MPa}, \sigma_3 = 0 \; \text{MPa}$ - **MSS:** $$ n = \frac{350}{100 - 0} = 3.5 \quad \text{Ans.} $$ - **DE:** $$ \begin{align} \sigma' = \left[100^2 - 100(100) + 100^2 \right]^{1/2} = 100 \; \text{MPa},\\ \\ \Rightarrow \quad n = \frac{350}{100} = 3.5 \quad \text{Ans.} \end{align} $$ $\;$ 2. $\sigma_1 = 100 \; \text{MPa}, \sigma_2 = 50 \; \text{MPa}, \sigma_3 = 0 \; \text{MPa}$ - **MSS:** $$ n = \frac{350}{100 - 0} = 3.5 \quad \text{Ans.} $$ - **DE:** $$ \begin{align} \sigma' = \left[100^2 - 100(50) + 50^2 \right]^{1/2} = 86.6 \; \text{MPa}, \\ \\ \Rightarrow \quad n = \frac{350}{86.6} = 4.04 \quad \text{Ans.} \end{align} $$ $\;$ 3. $\sigma_x = 100 \; \text{MPa}, \sigma_y = 0 \; \text{MPa}, \tau_{xy} = -75 \; \text{MPa}$ 必須先根據已知條件求出各主應力方可進行後續的計算: $$ \sigma_A = \frac{100}{2} + \sqrt{\left(\frac{100}{2}\right)^2 + (-75)^2} = 140 \; \text{MPa}, \sigma_B = -40 \; \text{MPa} $$ $$ \sigma_1 = 140 \; \text{MPa}, \sigma_2 = 0, \sigma_3 = -40 \; \text{MPa} $$ - **MSS:** $$ n = \frac{350}{140 - (-40)} = 1.94 \quad \text{Ans.} $$ - **DE:** $$ \begin{align} \sigma' = \left[100^2 + 3(-75)^2\right]^{1/2} = 164 \; \text{MPa},\\ \\ \Rightarrow \quad n = \frac{350}{164} = 2.13 \quad \text{Ans.} \end{align} $$ $\;$ 4. $\sigma_x = -50 \; \text{MPa}, \sigma_y = -75 \; \text{MPa}, \tau_{xy} = -50 \; \text{MPa}$ 必須先根據已知條件求出各主應力方可進行後續的計算: $$ \sigma_A = \frac{-50 - 75}{2} + \sqrt{\left(\frac{-50 + 75}{2}\right)^2 + (-50)^2} = -11.0, -114.0 \; \text{MPa} $$ $$ \sigma_1 = 0, \sigma_2 = -11.0 \; \text{MPa}, \sigma_3 = -114.0 \; \text{MPa} $$ - **MSS:** $$ n = \frac{350}{0 - (-114.0)} = 3.07 \quad \text{Ans.} $$ - **DE:** $$ \begin{align} \sigma' = \left[(-50)^2 - (-50)(-75) + (-75)^2 + 3(-50)^2 \right]^{1/2} = 109.0 \; \text{MPa},\\ \\ \Rightarrow \quad n = \frac{350}{109.0} = 3.21 \quad \text{Ans.} \end{align} $$ $\;$ 5. $\sigma_x = 100 \; \text{MPa}, \sigma_y = 20 \; \text{MPa}, \tau_{xy} = -20 \; \text{MPa}$ 必須先根據已知條件求出各主應力方可進行後續的計算: $$ \sigma_A = \frac{100 + 20}{2} + \sqrt{\left(\frac{100 - 20}{2}\right)^2 + (-20)^2} = 104.7, 15.3 \; \text{MPa} $$ $$ \sigma_1 = 104.7 \; \text{MPa}, \sigma_2 = 15.3 \; \text{MPa}, \sigma_3 = 0 \; \text{MPa} $$ - **MSS:** $$ n = \frac{350}{104.7 - 0} = 3.34 \quad \text{Ans.} $$ - **DE:** $$ \begin{align} \sigma' = \left[100^2 - 100(20) + 20^2 + 3(-20)^2 \right]^{1/2} = 98.0 \; \text{MPa}, \\ \\ \Rightarrow \quad n = \frac{350}{98.0} = 3.57 \quad \text{Ans.} \end{align} $$ $\;$ ### 最終結果 | Case | MSS | DE | |-------|---------|--------| | (a) | 3.5 | 3.5 | | (b) | 3.5 | 4.04 | | \(c) | 1.94 | 2.13 | | (d) | 3.07 | 3.21 | | (e) | 3.34 | 3.57 | --- $\,$ ## Problem 5-12 A ductile material has the properties $S_{yt} = 60 \, \text{kpsi}$ and $S_{yc} = 75 \, \text{kpsi}$. Using the ductile Coulomb-Mohr theory, determine the factor of safety for the states of plane stress given in Problem 5-3. **中文翻譯**:一種具延性的材料具有以下特性:拉伸降伏強度 $S_{yt} = 60 \, \text{kpsi}$ 和壓縮降伏強度 $S_{yc} = 75 \, \text{kpsi}$。使用延性材料的 Coulomb-Mohr 理論,來計算問題 5-3 中給定的平面應力狀態的安全係數。 **from Problem 5-3:** (a) $\sigma_x = 25 \, \text{kpsi}, \sigma_y = 15 \, \text{kpsi}$ (b) $\sigma_x = 15 \, \text{kpsi}, \sigma_y = -15 \, \text{kpsi}$ \(c) $\sigma_x = 20 \, \text{kpsi}, \tau_{xy} = -10 \, \text{kpsi}$ (d) $\sigma_x = -12 \, \text{kpsi}, \sigma_y = 15 \, \text{kpsi}, \tau_{xy} = -9 \, \text{kpsi}$ (e) $\sigma_x = -24 \, \text{kpsi}, \sigma_y = -24 \, \text{kpsi}, \tau_{xy} = -15 \, \text{kpsi}$ --- ### 計算過程 **已知條件:** $S_{yt} = 60 \, \text{kpsi}, S_{yc} = 75 \, \text{kpsi}$ $\;$ #### Step 1. 條列題目敘述提及之兩種計算方法的公式 - **延性材料的 Coulomb-Mohr 理論之公式 (Eq 5-26):** $$ n = \left( \frac{\sigma_1}{S_{yt}} - \frac{\sigma_3}{S_{yc}} \right)^{-1} $$ $\;$ #### Step 2. 計算指定應力狀態下的安全係數 1. $\sigma_1 = 25 \, \text{kpsi}, \sigma_3 = 0$ - **計算:** $$ n = \left( \frac{25}{60} - \frac{0}{75} \right)^{-1} = 2.40 \quad \text{Ans.} $$ $\;$ 2. $\sigma_1 = 15 \, \text{kpsi}, \sigma_3 = -15 \, \text{kpsi}$ - **計算:** $$ n = \left( \frac{15}{60} - \frac{-15}{75} \right)^{-1} = 2.22 \quad \text{Ans.} $$ $\;$ 3. $\sigma_x = 20 \, \text{kpsi}, \tau_{xy} = -10 \, \text{kpsi}$ 首先,計算主應力: $$ \sigma_A = \frac{20}{2} + \sqrt{\left(\frac{20}{2}\right)^2 + (-10)^2} = 24.1 \, \text{kpsi}, \quad \sigma_B = -4.1 \, \text{kpsi} $$ $$ \sigma_1 = 24.1 \, \text{kpsi}, \sigma_2 = 0, \sigma_3 = -4.1 \, \text{kpsi} $$ - **計算:** $$ n = \left( \frac{24.1}{60} - \frac{-4.1}{75} \right)^{-1} = 2.19 \quad \text{Ans.} $$ $\;$ 4. $\sigma_x = -12 \, \text{kpsi}, \sigma_y = 15 \, \text{kpsi}, \tau_{xy} = -9 \, \text{kpsi}$ 首先,計算主應力: $$ \sigma_A = \frac{-12 + 15}{2} + \sqrt{\left(\frac{-12 - 15}{2}\right)^2 + (-9)^2} = 17.7 \, \text{kpsi}, \quad \sigma_B = -14.7 \, \text{kpsi} $$ $$ \sigma_1 = 17.7 \, \text{kpsi}, \sigma_2 = 0, \sigma_3 = -14.7 \, \text{kpsi} $$ - **計算:** $$ n = \left( \frac{17.7}{60} - \frac{-14.7}{75} \right)^{-1} = 2.04 \quad \text{Ans.} $$ $\;$ 5. $\sigma_x = -24 \, \text{kpsi}, \sigma_y = -24 \, \text{kpsi}, \tau_{xy} = -15 \, \text{kpsi}$ 首先,計算主應力: $$ \sigma_A = \frac{-24 + (-24)}{2} + \sqrt{\left(\frac{-24 - (-24)}{2}\right)^2 + (-15)^2} = -9 \, \text{kpsi}, \quad \sigma_B = -39 \, \text{kpsi} $$ $$ \sigma_1 = 0, \sigma_2 = -9 \, \text{kpsi}, \sigma_3 = -39 \, \text{kpsi} $$ - **計算:** $$ n = \left( \frac{0}{60} - \frac{-39}{75} \right)^{-1} = 1.92 \quad \text{Ans.} $$ $\;$ ### 最終結果 | Case | Factor of Safety (n) | |-------|----------------------| | (a) | 2.40 | | (b) | 2.22 | | \(c) | 2.19 | | (d) | 2.04 | | (e) | 1.92 | --- $\,$ ## Problem 5-36 This problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces $F = 0.55 \, \text{kN}$, $P = 4.0 \, \text{kN}$, and $T = 25 \, \text{N} \cdot \text{m}$. ![image](https://hackmd.io/_uploads/H1oWHZnJke.png =520x) **中文翻譯**:本問題說明了機械元件的安全係數取決於選擇的分析點。在這裡,你需要根據畸變能量理論,計算位於圖中所示元件 A 和 B 處的應力元件的安全係數。該杆由 AISI 1006 冷拉鋼製成,並承受力 $F = 0.55 \, \text{kN}$,$P = 4.0 \, \text{kN}$,以及 $T = 25 \, \text{N} \cdot \text{m}$。 --- ### 計算過程 **已知條件:** - AISI 1006 冷拉鋼,查**表 A-20** 得其降伏強度為 $S_y = 280 \, \text{MPa}$ - $F = 0.55 \, \text{kN}$, $P = 4.0 \, \text{kN}$, $T = 25 \, \text{N} \cdot \text{m}$ $\,$ #### Step 1. 使用畸變能量理論計算 $A$ 點的應力 1. **正應力:** $$ \begin{align} \sigma_x &= \frac{4P}{\pi d^2} \\ \\ &= \frac{4(4) \times 10^3}{\pi(0.015^2)} = 22.6 \times 10^6 \, \text{Pa} = 22.6 \, \text{MPa} \end{align} $$ 2. **剪應力:** $$ \begin{align} \tau_{xy} &= \frac{16T}{\pi d^3} + \frac{V}{3A} \\ \\ &= \frac{16(25)}{\pi(0.015^3)} + \frac{4}{3} \times \frac{0.55(10^3)}{(\pi/4)(0.015^2)} = 33.6 \times 10^6 \, \text{Pa} = 33.6 \, \text{MPa} \end{align} $$ 3. **畸變應力:** $$ \sigma' = \left[ 22.6^2 + 3(33.6^2) \right]^{1/2} = 62.4 \, \text{MPa} $$ 4. **安全係數:** $$ n = \frac{S_y}{\sigma'} = \frac{280}{62.4} = 4.49 \quad \text{Ans.} $$ $\,$ #### Step 2. 使用畸變能量理論計算 $B$ 點的應力 1. **正應力:** $$ \begin{align} \sigma_x &= \frac{32FI}{\pi d^3} + \frac{4P}{\pi d^2} \\ \\ &= \frac{32(0.55 \times 10^3)(0.1)}{\pi(0.015^3)} + \frac{4(4 \times 10^3)}{\pi(0.015^2)} = 189 \times 10^6 \, \text{Pa} = 189 \, \text{MPa} \end{align} $$ 2. **剪應力:** $$ \begin{align} \tau_{xy} &= \frac{16T}{\pi d^3} + \frac{V}{3A} \\ \\ &= \frac{16(25)}{\pi(0.015^3)} + \frac{16}{(\pi/4)(0.015^2)} = 37.7 \times 10^6 \, \text{Pa} = 37.7 \, \text{MPa} \end{align} $$ 3. **畸變應力:** $$ \sigma' = \left[ 189^2 + 3(37.7^2) \right]^{1/2} = 200 \, \text{MPa} $$ 4. **安全係數:** $$ n = \frac{S_y}{\sigma'} = \frac{280}{200} = 1.4 \quad \text{Ans.} $$ $\;$ ### 最終結果 | Point | Factor of Safety (n) | |--------|----------------------| | A | 4.49 | | B | 1.4 | --- $\,$ ## Problem 5-38 A 1020 CD steel shaft is to transmit 20 hp while rotating at 1750 rpm. Determine the minimum diameter for the shaft to provide a minimum factor of safety of 3 based on the maximum-shear-stress theory. **中文翻譯**:一根 1020 冷拉鋼軸需在 1750 轉/分鐘的轉速下傳遞 20 馬力。根據最大剪應力理論,計算此軸的最小直徑,使其安全係數至少為 3。 --- ### 計算過程 **已知條件:** - 1020 冷拉鋼,降伏強度 $S_y = 57 \, \text{kpsi}$ - 功率 $H = 20 \, \text{hp}$ - 軸轉速 $n = 1750 \, \text{rpm}$ - 安全係數 $n_d = 3$ $\,$ #### Step 1. 使用最大剪應力理論 (MSS) 計算最小直徑 1. **扭矩公式**: 扭矩 $T$ 可由功率 $H$ 和轉速 $n$ 來計算: $$ T = \frac{63025 \, H}{n} \quad (1) $$ 2. **最大剪應力公式**: 根據最大剪應力理論,最大剪應力為: $$ \tau_{\text{max}} = \frac{S_y}{2n_d} = \frac{16T}{\pi d^3} \quad (2) $$ 其中 $n_d$ 是設計因子。 3. **聯立方程式解出直徑 $d$**: 由 (1) 代入 (2),並解出 $d$: $$ d = \Bigg[ \frac{32(63 \, 025)Hn_d}{n\pi S_y} \Bigg]^{1/3} \quad (3) $$ 4. **代入已知條件**: $$ H = 20 \, \text{hp}, \quad n_d = 3, \quad n = 1750 \, \text{rpm}, \quad S_y = 57 \times 10^3 \, \text{psi} $$ 代入後計算最小直徑: $$ d_{\text{min}} = \Bigg[ \frac{32(63 \, 025)(20)(3)}{1750\pi(57 \times 10^3)} \Bigg]^{1/3} = 0.728 \, \text{in} \quad \text{Ans.} $$ $\,$ ### 最終結果 - 最小直徑 $d_{\text{min}} = 0.728 \, \text{in}$ --- $\,$ ## Problem 5-42 The shaft $ABD$ in Problem 3-53 is made from AISI 1040 CD steel. Based on failure at the wall at $A$, determine the factor of safety using: (a) the maximum-shear-stress theory. (b) the distortion-energy theory. ![image](https://hackmd.io/_uploads/BJl5JcvCC.png =430x) **中文翻譯**:問題 3-53 中的軸 $ABD$ 使用 AISI 1040 冷拉鋼製成。基於在 $A$ 點的破壞,使用以下方法來計算安全係數: (a) 最大剪應力理論。 (b) 畸變能量理論。 --- ### 計算過程 **已知條件:** - 材料為 AISI 1040 冷拉鋼,查**表 A-20** 得其降伏強度為 $S_y = 490 \, \text{MPa}$ - 問題 3-53 中的應力狀態:$\sigma_1 = 122.6 \, \text{MPa}$, $\sigma_2 = 0$, $\sigma_3 = -10.2 \, \text{MPa}$, $\tau_{\text{max}} = 66.4 \, \text{MPa}$ ( 計算過程請參考:[CH3-Prob03-53](https://hackmd.io/@1131ME3359/ryN2gnB0C) ) $\,$ #### Step 1. 使用最大剪應力理論 (MSS) 計算安全係數 1. **MSS 理論公式:** $$ n_{y} = \frac{S_y}{2\tau_{\text{max}}} \quad \text{或} \quad n_{y} = \frac{S_y}{\sigma_1 - \sigma_3} $$ 代入已知條件計算安全係數: $$ n_{MSS} = \frac{490}{2(66.4)} = 3.69 \quad \text{Ans.} $$ $\,$ #### Step 2. 使用畸變能量理論 (DE) 計算安全係數 1. **DE 理論公式:** $$ \sigma' = \left[ \sigma_1^2 - \sigma_1 \sigma_3 + \sigma_3^2 \right]^{1/2} $$ 代入已知條件: $$ \sigma' = \left[ 122.6^2 - 122.6(-10.2) + (-10.2)^2 \right]^{1/2} = 128 \, \text{MPa} $$ 2. **計算安全係數:** $$ n_{DE} = \frac{S_y}{\sigma'} = \frac{490}{128} = 3.83 \quad \text{Ans.} $$ $\,$ ### 最終結果 | Theory | Factor of Safety (n) | |---------|----------------------| | MSS | 3.69 | | DE | 3.83 | --- $\,$ ## Problem 5-49 Cantilevered rod $OA$ is 0.5 m long and made from AISI 1010 hot-rolled steel. A constant force and torque are applied as shown. Determine the minimum diameter, $d$, for the rod that will achieve a minimum static factor of safety of 2: (a) using the maximum-shear-stress failure theory. (b) using the distortion-energy failure theory. ![image](https://hackmd.io/_uploads/HJZaJf2kke.png =550x) **中文翻譯**:懸臂杆 $OA$ 長 0.5 米,由 AISI 1010 熱軋鋼製成。施加了一個恆定的力和扭矩,如圖所示。計算該杆的最小直徑 $d$,以達到最小靜態安全係數為 2: (a) 使用最大剪應力破壞理論。 (b) 使用畸變能量破壞理論。 --- ### 計算過程 **已知條件:** - 材料為 AISI 1010 熱軋鋼,查**表 A-20** 得其降伏強度為 $S_y = 180 \, \text{MPa}$ - 杆長:$L = 0.5 \, \text{m}$ - 施加力:$F = 150 \, \text{N}$ - 扭矩:$T = 25 \, \text{N} \cdot \text{m}$ - 訂定之最小靜態安全係數:$n_y = 2$ $\,$ #### Step 1. 使用最大剪應力破壞理論 (MSS) 計算最小直徑 1. **計算彎矩:** $$ M_z = F \cdot L = 150 \times 0.5 = 75 \, \text{N} \cdot \text{m} $$ 2. **正應力:** $$ \sigma = \frac{32M_z}{\pi d^3} = \frac{32(75)}{\pi d^3} = \frac{2400}{\pi d^3} $$ 3. **剪應力:** $$ \tau = \frac{16T}{\pi d^3} = \frac{16(25)}{\pi d^3} = \frac{400}{\pi d^3} $$ 4. **最大剪應力:** $$ \tau_{\text{max}} = \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} = \sqrt{\left(\frac{1200}{\pi d^3}\right)^2 + \left(\frac{400}{\pi d^3}\right)^2} = \frac{402.63}{d^3} $$ 5. **代入降伏強度與訂定之安全係數:** $$ \frac{S_y}{2n_y} = \frac{180 \times 10^6}{2(2)} = \frac{402.63}{d^3} $$ 6. **解出最小直徑:** $$ d = \Bigg[ \frac{4(402.63)}{180 \times 10^6} \Bigg]^{1/3} = 0.0208 \, \text{m} = 20.8 \, \text{mm} \quad \text{Ans.} $$ $\,$ #### Step 2. 使用畸變能量破壞理論 (DE) 計算最小直徑 1. **畸變應力公式:** $$ \sigma' = \left[ \sigma^2 + 3\tau^2 \right]^{1/2} = \left[ \left(\frac{2400}{\pi d^3}\right)^2 + 3\left(\frac{400}{\pi d^3}\right)^2 \right]^{1/2} = \frac{795.14}{d^3} $$ 2. **代入降伏強度與訂定之安全係數:** $$ \frac{S_y}{n_y} = \frac{180 \times 10^6}{2} = \frac{795.14}{d^3} $$ 3. **解出最小直徑:** $$ d = \Bigg[ \frac{2(795.14)}{180 \times 10^6} \Bigg]^{1/3} = 0.0207 \, \text{m} = 20.7 \, \text{mm} \quad \text{Ans.} $$ --- ### 最終結果 | Theory | Minimum Diameter ($d$) | |---------|------------------------| | MSS | 20.8 mm | | DE | 20.7 mm | --- $\,$ ## Problem 5-73 A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures. This cylinder has a $3\frac{1}{2} \, \text{-in}$ OD (Outer Diameter), a $0.065 \, \text{-in}$ wall thickness, and $\nu = 0.334$. The purchase order specifies a minimum yield strength of 46 kpsi. Using the distortion-energy theory, determine the factor of safety if the pressure-release valve is set at 500 psi. **中文翻譯**:一個輕型壓力容器由 2024-T3 鋁合金管製成,並配有合適的端部封閉裝置。該圓柱體的外徑為 $3\frac{1}{2}$ 英吋,壁厚為 0.065 英吋,且蒲松比 $\nu = 0.334$。訂購單規定其最小降伏強度須為 46 kpsi。使用畸變能量理論,計算當壓力釋放閥設置為 500 psi 時的安全係數。 --- ### 計算過程 **已知條件:** - 外徑 $OD = 3.5 \, \text{in}$ - 壁厚 $t = 0.065 \, \text{in}$ - 蒲松比 $\nu = 0.334$ - 最小降伏強度 $S_y = 46 \, \text{kpsi}$ - 壓力釋放閥之設定壓力 $p = 500 \, \text{psi}$ **概念:** - 節錄課本內容(有興趣再看就好。) :::spoiler --- When the wall thickness of a cylindrical pressure vessel is about **one-tenth**, or less, of its radius, the radial stress that results from pressurizing the vessel is quite small compared with the tangential stress. Under these conditions, the tangential stress, called the **hoop stress**, can be obtained as follows: From Eq. (3-50), the average tangential stress is given by: $$ (\sigma_t)_{av} = \frac{\int_{r_i}^{r_o} \sigma_r dr}{r_o - r_i} = \frac{\int_{r_i}^{r_o} \frac{r_i^2 p_i}{r_o^2 - r_i^2} \left(1 + \frac{r_o^2}{r_i^2}\right) dr}{r_o - r_i} = \frac{p_i r_i}{r_o - r_i} = \frac{p_i d_i}{2t} \quad \text{(3-52)} $$ Where $d_i$ is the inside diameter. **For a thin-walled pressure vessel**, an approximation to the maximum tangential stress is: $$ (\sigma_t)_{max} = \frac{p(d_i + t)}{2t} \quad \text{(3-53)} $$ In a closed cylinder, the **longitudinal stress** $\sigma_l$ exists because of the pressure upon the ends of the vessel. If we assume this stress is also distributed uniformly over the wall thickness, we can easily find it to be: $$ \sigma_l = \frac{p d_i}{4t} \quad \text{(3-54)} $$ --- ::: $\,$ #### Step 1. 計算應力內徑計算 根據 $r/t = 26.9 > 10$,我們可以使用**薄壁公式**進行計算。管子的內徑 ID 為: $$ ID = d_i = OD - 2t = 3.5 - 2(0.065) = 3.37 \, \text{in} $$ ![image](https://hackmd.io/_uploads/HkdDWpnyyx.png =330x) $\,$ #### Step 2. 計算應力 由於管壁總共受到三個方向的外力影響,故總共有三個主應力,其應力元素如下圖所示: ![image](https://hackmd.io/_uploads/Bkk9da2kyl.png =330x) 接著,則參考教科書說明之概念,依序計算其三個主應力。 1. **切向/環向應力 Tangential stress (hoop stress), $\sigma_t$:** 根據公式 (3-53): $$ \begin{align} \sigma_t &= \frac{p(d_i + t)}{2t} \\ \\ &= \frac{500(3.37 + 0.065)}{2(0.065)} = 13.2 \, \text{kpsi} \end{align} $$ 2. **縱向應力 Longitudinal stress, $\sigma_l$:** 根據公式 (3-54): $$ \begin{align} \sigma_l &= \frac{p d_i}{4t} \\ \\ &= \frac{500(3.37)}{4(0.065)} = 6.48 \, \text{kpsi} \end{align} $$ 3. **徑向應力 Radial stress, $\sigma_r$:** $$ \sigma_r = -p = -500 \, \text{psi} = -0.5 \, \text{kpsi} $$ $\,$ #### Step 3. 使用畸變能量理論計算安全係數 1. **主應力排序:** 根據應力大小的順序,主應力排序為:$\sigma_t > \sigma_l > \sigma_r$ 則: $$ \sigma_1 = \sigma_t, \quad \sigma_2 = \sigma_l, \quad \sigma_3 = \sigma_r $$ 2. **計算三維之等效應力 (von Mises Stress), $\sigma'$:** 使用公式 (5-12) 計算等效應力: $$ \begin{align} \sigma' &= \left[ \frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2} \right]^{1/2} \\ \\ &= \left[ \frac{(13.2 - 6.48)^2 + (6.48 - (-0.5))^2 + (-0.5 - 13.2)^2}{2} \right]^{1/2} \\ \\ &= 11.87 \, \text{kpsi} \end{align} $$ 3. **安全係數 $n$:** $$ n = \frac{S_y}{\sigma'} = \frac{46}{11.87} = 3.88 \quad \text{Ans.} $$ $\,$ ### 最終結果 - **安全係數** $n = 3.88$ --- $\,$ ## Problem 5-76 The figure shows a shaft mounted in bearings at **A** and **D** and having pulleys at **B** and **C**. The forces shown acting on the pulley surfaces represent the belt tensions. The shaft is to be made of AISI 1035 CD steel. Using a conservative failure theory with a design factor of 2, determine the minimum shaft diameter to avoid yielding. ![image](https://hackmd.io/_uploads/rk8SyRnJ1e.png =470x) **中文翻譯**:如圖所示,一根軸安裝在 **A** 和 **D** 的軸承上,並在 **B** 和 **C** 處有皮帶輪。作用在皮帶輪表面的力是為皮帶張力。該軸將由 AISI 1035 冷拉鋼製成。使用保守破壞理論並採用設計因子為 2,確定該軸的最小直徑以避免因降伏造成破壞。 --- ### 計算過程 **已知條件:** - 材料:AISI 1035 CD 鋼,其降伏強度為 $S_y = 67 \, \text{kpsi}$ - 設計因子(訂定之安全係數) $n = 2$ $\,$ #### Step 1. 計算最大彎矩 (Maximum Bending Moment) 1. **繪製系統的自由體圖:** 由於兩組外力分別施加在不同的方向,故須個別透過靜力平衡之分析($\Sigma F = 0$),以求得 $A$ 點與 $D$ 點在 $x-y$ 以及 $x-z$ 平面之反作用力分量,方可建立 $x-y$ 以及 $x-z$ 平面的自由體圖。其結果如下所示: - 在 $x-y$ 平面: ![image](https://hackmd.io/_uploads/ByxCxC2k1e.png =330x) - 在 $x-z$ 平面: ![image](https://hackmd.io/_uploads/BkeTeA31kl.png =330x) 2. **根據兩平面之自由體圖,計算外部負載所造成之彎矩:** 各別分析 $B$ 與 $C$ 兩點,於 $x-y$ 以及 $x-z$ 平面上的彎矩分量。 - 在 $B$ 點處: $$ \begin{align} M_{B[x-y]} &= R_{A[x-y]} \times \bar{AB} \\ \\ &= 223 \times 8 = 1784 \; \text{lbf} \cdot \text{in} \end{align} $$ $$ \begin{align} M_{B[x-z]} &= R_{A[x-z]} \times \bar{AB} \\ \\ &= 123 \times 8 = 984 \; \text{lbf} \cdot \text{in} \end{align} $$ $$ \begin{align} M_B &= \sqrt{M_{B[x-y]}^2 + M_{B[x-z]}^2} \\ \\ &= \sqrt{(1784)^2 + (984)^2} = 2037 \; \text{lbf} \cdot \text{in} \end{align} $$ - 在 $C$ 點處: $$ \begin{align} M_{C[x-y]} &= R_{C[x-y]} \times \bar{CD} \\ \\ &= 127 \times 6 = 762 \; \text{lbf} \cdot \text{in} \end{align} $$ $$ \begin{align} M_{C[x-z]} &= R_{C[x-z]} \times \bar{CD} \\ \\ &= 328 \times 6 = 1968 \; \text{lbf} \cdot \text{in} \end{align} $$ $$ \begin{align} M_C &= \sqrt{M_{C[x-y]}^2 + M_{C[x-z]}^2} \\ \\ &= \sqrt{(762)^2 + (1968)^2} = 2110 \; \text{lbf} \cdot \text{in} \end{align} $$ - 比較並求得最大彎矩: 根據上述結果,由於 $M_C > M_B$,因此,最大彎矩則為: $$ M_{max} = M_C = 2110 \; \text{lbf} \cdot \text{in}. \quad \text{ Ans.} $$ $\,$ #### Step 2. 計算最大扭矩 (Maximum Torque) 由於皮帶輪上的外部負載會對軸向產生扭矩,所造成之效應須一同進行分析。在上一步驟中已知 $C$ 點會有最大彎矩,則 $B$ 與 $C$ 點之間的傳遞扭矩為: $$ \Sigma T = 0, $$ $$ T_{max} = 300 \times 4 - 50 \times 4 = 1000 \; \text{lbf} \cdot \text{in}. \quad \text{ Ans.} $$ $\,$ #### Step 3. 計算應力 1. **剪應力 $\tau_{xz}$:** $$ \tau_{xz} = \frac{16 T_{max}}{\pi d^3} = \frac{16(1000)}{\pi d^3} = \frac{5.093}{d^3} \, \text{kpsi} $$ 2. **正應力 $\sigma_x$:** $$ \sigma_x = \frac{32M_{max}}{\pi d^3} = \frac{32(2110)}{\pi d^3} = \frac{21.492}{d^3} \, \text{kpsi} $$ $\,$ #### Step 4. 計算最大剪應力 將上述所得之應力,代入公式或利用莫爾圓等方法,以求得最大剪應力: $$ \begin{align} \tau_{\text{max}} &= \left[ \left( \frac{\sigma_x}{2} \right)^2 + \tau_x^2 \right]^{1/2} \\ \\ &= \left[ \left( \frac{21.492}{d^3} \right)^2 + \left( \frac{5.093}{d^3} \right)^2 \right]^{1/2} = \frac{11.89}{d^3} \, \text{kpsi} \end{align} $$ $\,$ #### Step 5. 計算最小直徑 選用最大剪應力理論 (MSS) 作為評估安全係數之保守破壞理論,即公式 (5-3): $$ \begin{align} \tau_{\text{max}} &= \frac{S_y}{2n} \\ \\ &= \frac{67}{2(2)} = \frac{11.89}{d^3}, \quad \Rightarrow \quad d = 0.892 \, \text{in} \quad \text{Ans.} \end{align} $$ $\,$ ### 最終結果 - **最小直徑** $d = 0.892 \, \text{in}$ --- $\,$ ## Problem 5-84 Two steel tubes have the specifications: | | Inner Tube | Outer Tube | |--------------|-----------------------|-----------------------| | **ID** | $20 \pm 0.050 \, \text{mm}$ | $39.98 \pm 0.008 \, \text{mm}$ | | **OD** | $40 \pm 0.008 \, \text{mm}$ | $65 \pm 0.10 \, \text{mm}$ | These are shrink-fitted together. Find the nominal shrink-fit pressure and the von Mises stress in each body at the fit surface. **中文翻譯**:兩鋼管以縮緊配合方式進行組裝,其規格如上表所示。求出標稱縮緊壓力,以及兩鋼管在接合面之 von Mises 等效應力。 --- ### 計算過程 **已知條件:** - $E = 207 \times 10^3 \, \text{MPa}$ - 標稱徑向干涉量:$\delta_{\text{nom}} = (40 - 39.98) / 2 = 0.01 \, \text{mm}$ $\,$ #### Step 1. 計算標稱縮緊壓力 根據公式 (3-57) 計算縮緊壓力: $$ p = \frac{E \delta_{\text{nom}}}{2R^2} \left[ \frac{r_o^2 - R^2}{r_o^2 - r_i^2} \right] $$ 代入數據: $$ p = \frac{207(10^3) \times 0.01}{2(20)^3} \left[ \frac{32.5^2 - 20^2}{32.5^2 - 10^2} \cdot \frac{20^2 - 10^2}{32.5^2 - 10^2} \right] = 26.64 \, \text{MPa} \quad \text{Ans.} $$ $\,$ #### Step 2. 計算內管的 von Mises 等效應力 - **環向應力 $\sigma_t$**: $$ \sigma_t = -p \frac{R^2 + r_i^2}{R^2 - r_i^2} = -26.64 \left( \frac{20^2 + 10^2}{20^2 - 10^2} \right) = -44.40 \, \text{MPa} $$ - **徑向應力 $\sigma_r$**: $$ \sigma_r = -p = -26.64 \, \text{MPa} $$ - **von Mises 等效應力 $\sigma'$**: 根據公式 (5-13): $$ \sigma' = \Big[ (-44.40)^2 + (-44.40)(-26.64) + (-26.64)^2 \Big]^{1/2} = 38.71 \, \text{MPa} \quad \text{Ans.} $$ $\,$ #### Step 3. 計算外管的 von Mises 等效應力 - **環向應力 $\sigma_t$**: $$ \sigma_t = p \frac{r_o^2 + R^2}{r_o^2 - R^2} = 26.64 \left( \frac{32.5^2 + 20^2}{32.5^2 - 20^2} \right) = 59.12 \, \text{MPa} $$ - **徑向應力 $\sigma_r$**: $$ \sigma_r = -p = -26.64 \, \text{MPa} $$ - **von Mises 等效應力 $\sigma'$**: 根據公式 (5-13): $$ \sigma' = \Big[ (59.12)^2 - 59.12(-26.64) + (-26.64)^2 \Big]^{1/2} = 76.03 \, \text{MPa} \quad \text{Ans.} $$ $\,$ ### 最終結果 - 標稱縮緊壓力:$p = 26.64 \, \text{MPa}$ - 內管的 von Mises 等效應力:$\sigma' = 38.71 \, \text{MPa}$ - 外管的 von Mises 等效應力:$\sigma' = 76.03 \, \text{MPa}$ ---