分散式共筆 Group 4 === # CAP Theorem * [1-1 Perspectives on the CAP Theorem:](https://hackmd.io/@11220CS542600-group4/BJyZcHbx0) * [1-2 CAP Twelve Years Later: How the “Rules” Have Changed](https://hackmd.io/@11220CS542600-group4/S1qHySbx0) * [1-3 Time, Clocks, and the Ordering of Events in a Distributed System](https://hackmd.io/@11220CS542600-group4/rJN0S8Ea6) * [1-4 Weighted Voting for Replicated Data](https://hackmd.io/@11220CS542600-group4/r1IqiHWlC) # Consistency Protocol * [2-1 Linearizability](https://hackmd.io/@11220CS542600-group4/Bk9rPdOA6) * [2-2 Don't Settle for eventaul](https://hackmd.io/@11220CS542600-group4/HJOS1PT10) * [2-3 Managing Update Conflicts in Bayou](https://hackmd.io/@11220CS542600-group4/Syc09H-x0) * [2-4 The Potential Dangers of Causal Consistency](https://hackmd.io/@11220CS542600-group4/ByUgxr-xA) # Consensus Protocol * [3-1 A Majority Consensus Approach to Concurrency Control](https://hackmd.io/@11220CS542600-group4/SJ294C7eA) * [3-2 Paxos Made Live - An Engineering Perspective](https://hackmd.io/@11220CS542600-group4/ryd7OiQgA) * [3-3 Raft - In Search of an Understandable Consensus Algorithm](https://hackmd.io/@11220CS542600-group4/rJBvnvCkA) * [3-4 The Chubby lock service for loosely-coupled distributed systems](https://hackmd.io/@11220CS542600-group4/Hkj3HFGlC) # Data Processing Part I * [4-1 Kafka: a Distributed Messaging System for Log Processing](/X-z7TO-eTQ6BUgRj7yT0zA) * [4-2 Consistency and Completeness: Rethinking Distributed Stream Processing in Apache Kafka](/Cqd6VpkUTIieb5VlSGX9Vg) * [4-3 Apache FlinkTM: Stream and Batch Processing in a Single Engine](/etA5kCA2QcKcgQNcI0GmQg) * [4-4 Scaling Memcache at Facebook](/mFIFHVrURRauTTBDpP-nhw) # Data Processing Part II * [5-1 MapReduce: Simplified Data Processing on Large Clusters](/cwr9gRcqRYC5uu5V9f_kHw) * [5-2 Spark & Resilient Distributed Datasets](/VKMtXx0CSn2F-jJFbMvV2Q) * [5-3 Hive – A Petabyte Scale Data Warehouse Using Hadoop](/TEe7fBcRSaaCh9dWkwzszA) * [5-4 Disk-Locality in Datacenter Computing Considered Irrelevant](/WhP_8tr4TV6kMR8ny07ChA) # Distributed File Systems * [6-1 Cluster-Based Scalable Network Services](/QlH2Q3wvRy651MshyIoG0g) * [6-2 CephFS & CRUSH](/_Lv1dLOgTMOWi9xH_5z1Ew) * [6-3 The Google File System](/oDqjPGBmQHyCTmffGVqbvw) * [6-4 Chord & Consistent Hashing and Random Trees](/aTWgh3K5SGuA3KhRfqwO6A) # Distributed Databse Systems * [7-1 Bigtable: A Distributed Storage System for Structured Data](/uzQTSQLtSJmTZXFRs8ritQ) * [7-2 Spanner: Google’s Globally-Distributed Database](/S6pwn5y0TjW7RfRksQ1u6w) * [7-3 DynamoDB](/Gfj0iReRRH2KnR-Jh-ZaXQ) * [7-4 PNUTS: Yahoo!'s hosted data serving platform](/uSaRyyO0RB2aMgXbsInh1A) # Cluster Manager * [8-1. Large-scale cluster management at Google with Borg](/ZF1N2ye9Q8WgKoSPRxXNAg) * [8-2. Omega: flexible, scalable schedulers for large compute clusters](/R0LOUhxWS4OkNcrWLv3-GQ) * [8-3 Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center](/twU-b7LLRf-6BuYuTF8GZg) * [8-4 Apache Hadoop YARN: Yet Another Resource Negotiator](/U2kPBS5VT1yMeWb2vfa5YQ)
{"description":"1-1 Perspectives on the CAP Theorem:","title":"分散式共筆 Group 4","contributors":"[{\"id\":\"6b71857d-4dd5-4f0a-81fe-fa4636da6c23\",\"add\":1698,\"del\":80},{\"id\":\"a42219a9-99f7-4afb-9fa3-a709aac3fdc8\",\"add\":2196,\"del\":681},{\"id\":\"1c5176ef-ef72-4172-8988-738f08ed2699\",\"add\":602,\"del\":198},{\"id\":\"45d4548c-6f88-420e-b1ee-0b9847b514e7\",\"add\":232,\"del\":694}]"}
Expand menu