# Week 3 :::info :::spoiler Click to Open TOC [TOC] ::: ## Question :::info :::spoiler Click to Open Question ![](https://i.imgur.com/o9JSjS4.png) ![](https://i.imgur.com/LDoqCtV.png) ![](https://i.imgur.com/CusFH8w.png) ### Check - [x] Q1 yee - [x] Q2 Mark - [x] Q3 LXS - [x] Q4 Chung - [x] Q5 Xian - [x] Q6 songchiu - [x] Q7 Xian & Mark ::: ## Answer ### Q1 > - [name=yee] ![](https://i.imgur.com/GcFBFOy.png) #### 【Solution】 $\text{According to the definition}$ $\begin{aligned} \\\lim_{n\to\infty}\dfrac{f(n)}{g(n)} &= c ≠ 0 \implies f(n) = \Theta(g(n))\\ \lim_{n\to\infty}\dfrac{f(n)}{g(n)} &= 0 \ f(n) = o(g(n)) \implies O(g(n))\\ \lim_{n\to\infty}\dfrac{f(n)}{g(n)} &= \infty \ f(n) = ω(g(n)) \implies Ω(g(n)) \end{aligned}$ #### 【a】 $\begin{aligned} \lim_{n\to\infty} \dfrac{(lgn)^k }{n^ε} &=\ \dfrac {d}{dn} \dfrac{(lgn)^k }{n^ε}\\ &=\ \lim_{n\to\infty} \dfrac{k(lgn)^{k-1}\dfrac {1}{n}}{εn^{ε-1}}\\ &=\ \lim_{n\to\infty} \dfrac{k(lgn)^{k-1}}{εn^{ε}}\\ &=\ \lim_{n\to\infty} \dfrac {d}{dn} \dfrac{k(lgn)^{k-1}}{εn^{ε}}\\ &= \lim_{n\to\infty} \dfrac {k(k-1)(lgn)^{k-2}}{ε^2n^{ε}}\ \cdots\\ &=\ \lim_{n\to\infty} \dfrac {k(k-1)(k-2)\cdots1}{ε^kn^{ε}}\\ \end{aligned}$ $\text{Let } n\ =\ \infty\ , \ \lim_{n\to\infty} \dfrac {k(k-1)(k-2)\cdots1}{ε^kn^{ε}}\ =\ \dfrac{1}{\infty}\ =\ 0_\#\\ \text{According to the definition when }\lim_{n\to\infty}\dfrac{f(n)}{g(n)}\ =\ 0\ ,\ f(n) \text{ equals } o(g(n)) \ \implies O(g(n)).$ | A | B | O | o | Ω | ω | Θ | | --------- | ------- | ---- | ---- | --- | --- | --- | | $lg(n)^k$ | $n^ε$ | yes | yes | no | no | no | #### 【b】 $\begin{aligned} \lim_{n\to\infty} \dfrac{n^k}{c^n}\ =\ \lim_{n\to\infty} \dfrac{klogn}{nlogc} \end{aligned}$ $\text{Let } n\ =\ \infty\ ,\ \lim_{n\to\infty} \dfrac{klogn}{nlogc}\ =\ \dfrac{1}{\infty} =\ 0_\#\\ \text{According to the definition when }\lim_{n\to\infty}\dfrac{f(n)}{g(n)}\ =\ 0\ ,\ f(n) \text{ equals } o(g(n)) \ \implies O(g(n)).$ | A | B | O | o | Ω | ω | Θ | | --------- | ------- | ---- | ---- | --- | --- | --- | | $n^k$ | $c^n$ | yes | yes | no | no | no | #### 【c】 $\begin{aligned} \lim_{n\to\infty} \dfrac{\sqrt n}{n^{sin(n)}} &=\ \lim_{n\to\infty} n ^ {\dfrac{ 1 }{ 2 } - \sin (n)}\\ \end{aligned}$ $\because \lim_{n\to\infty} n ^ {\dfrac{ 1 }{ 2 } - \sin (n)}\text { is divergent.}\\ \therefore \text {There is no relation betwteen } \sqrt n \text { and }\ n^{sin(n)}.$ | A | B | O | o | Ω | ω | Θ | | --------- | ------- | ---- | ---- | --- | --- | --- | | $\sqrt{n}$ | $n^{\sin(n)}$ | no | no | no | no | no | #### 【d】 $\begin{aligned} \lim_{n\to\infty} \dfrac{2^n}{2^\frac{n}{2}}=\lim_{n\to\infty} 2^{n-\frac{n}{2}}=\ \lim_{n\to\infty}2^\frac{n}{2}\\ \end{aligned}$ $\text{ Let } n=\infty\ ,\ \lim_{n\to\infty}2^\frac{n}{2}\ = \infty\\ \text{According to the definition when }\lim_{n\to\infty}\dfrac{f(n)}{g(n)}= \infty \ ,\ f(n) \text{ equals } ω(g(n)) \implies Ω(g(n)).$ | A | B | O | o | Ω | ω | Θ | | --------- | ------- | ---- | ---- | --- | --- | --- | | $2^n$ | $2^{n/2}$| no | no | yes | yes | no | #### 【e】 $\\\because c > 1\ \& \ {n\to\infty}\\ \therefore c^{ln(n)} = n^{ln(c)}$ $\begin{aligned} \text{Thus , }\lim_{n\to\infty} \dfrac{n^{lg(c)}}{c^{ln(n)}} &= \lim_{n\to\infty} \dfrac{n^{lg(c)}}{n^{ln(c)}}\\ &= \lim_{n\to\infty} \dfrac{n^\dfrac{ln(c)}{ln(2)}}{n^{ln(c)}} \\ &= \lim_{n\to\infty} n^{\dfrac{ln(c)}{ln2}-\displaystyle ln(c)} \\ &= \lim_{n\to\infty} n^{\dfrac{ln(c)(1-ln2)}{ln2}} \end{aligned}$ $\begin{aligned} \\\because \dfrac{ln(c)(1-ln2)}{ln2} \text{ is a constant , Let } n = \infty \ ,\ \lim_{n\to\infty} n^{\dfrac{ln(c)(1-ln2)}{ln2}} = \infty \end{aligned}$ $\begin{aligned} \text{According to the definition when }\lim_{n\to\infty}\dfrac{f(n)}{g(n)}= \infty \ ,\ f(n) \text{ equals } ω(g(n)) \implies Ω(g(n)). \end{aligned}$ | A | B | O | o | Ω | ω | Θ | | --------- | ------- | ---- | ---- | --- | --- | --- | | $n^{lg(c)}$ | $c^{ln(n)}$ | no | no | yes | yes | no | #### 【f】 $\begin{aligned} \lim_{n\to\infty}\dfrac{lg(n!)}{lg(n^n)} &\approx \lim_{n\to\infty}\dfrac{lg(\sqrt{2\pi n}\dfrac{n}{e}^n)}{nlgn} \\ &\approx \lim_{n\to\infty} \dfrac{nlgn - nlge + lg(\sqrt{2\pi n})}{nlgn}\\ &\approx\lim_{n\to\infty}\dfrac{nlgn}{nlgn} = 1_\# \end{aligned}$ $\begin{aligned} \text{According to the definition when }\lim_{n\to\infty}\dfrac{f(n)}{g(n)}= c ≠ 0 \ ,\ f(n) = \Theta(g(n)) \Longleftrightarrow f(n) = O(g(n))\ \ and \ \ f(n) = Ω(g(n)). \end{aligned}$ | A | B | O | o | Ω | ω | Θ | | --------- | ------- | ---- | ---- | --- | --- | --- | | $lg(n!)$ | $lg(n^n)$ | yes | no | yes | no | yes | ### Q2 > - [name=Mark] ![](https://i.imgur.com/AkaiVJj.png) #### Hint - non-negative $\rightarrow$ take absolute value - cannot greater(less) than the other permanent #### Ans $f(n) = |sin(n)|$ $g(n) = |cos(n)|$ ![](https://i.imgur.com/aq9fPiX.png) 我發現我這題好水,只是我看不懂題目 我是:shit: 您是大佬,怎麼可能會是大便呢 0 乾你看 水到有剩 ### Q3 > - [name=LXS] ![](https://i.imgur.com/Dy7yTxi.png) #### 由大到小排序,框內的部分為 Equivalence class #### 括弧內為大略所屬的複雜度範圍 $\begin{gather*} 2^{2^{n + 1}} \\ 2^{2^n}\text{(雙重指數時間)} \\ (n+1)!=(n+1)n! \\ n!\text{(階乘時間)} \\ e^n \\ n\cdot 2^n \\ 2^n \\ (3/2)^n\text{(指數時間)} \\ \boxed{\begin{gather*} n^{\lg \lg n} = \lg{n}^{\lg n} \\ \end{gather*}} \\ (\lg n)! \\ n^3\text{(三次時間)} \\ \boxed{n^2 = 4^{\lg n}\text{(二次時間)}} \\ \boxed{lg(n!)\in\Theta(n\lg n)} \\ \boxed{2^{\lg n} = n\text{(線性時間)}} \\ (\sqrt 2)^{\lg n} = \sqrt n\text{(<1次時間)} \\ 2^{\sqrt {2 \lg n}} \\ \lg^2 n \\ \ln n\text{(對數時間)} \\ \sqrt {\lg n}\\ \ln \ln n \\ 2^{\lg^\ast n} \\ \boxed{\begin{gather*} \lg^* n \in\Theta(\lg^\ast(\lg n))\\ \end{gather*}} \\ \lg(\lg^\ast n)\ \text{(迭代對數)} \\ \boxed{\begin{gather*} n^{1/\lg n}=2 \\ 1\text{(常數時間)} \end{gather*}} \end{gather*}$ #### 【證明】 $\begin{aligned} n^{\lg \lg n} &= (2^{\lg n})^{\lg \lg n} = (2^{\lg \lg n})^{\lg n} = (\lg n)^{\lg n} \\ 4^{\lg n} &= 2^{2\lg n} = 2^{\lg n^2} = n^2 \\ 2^{\lg n} &= n \\ (\sqrt 2)^{\lg n} &= 2^{\frac 1 2 \cdot \lg n} = n^{\frac 1 2} = \sqrt n \\ \lg^*(\lg n) &= \lg^* n - 1 \\ n^{1/\lg n} &= n^{\lg 2/ \lg n} = n^{log_n 2} = 2 \\ lg((lg n)!) &= lgn\cdot lglgn \geq lgn^3=3lgn \\ 2^{\sqrt {2 \lg n}}&=2^{\lg{n}\sqrt{\frac{2}{\lg{n}}}}=n^{\sqrt{\frac{2}{\lg{n}}}}<n^{\frac{1}{2}} \end{aligned}$ $\text{By Stirling approximation} \\ \lg(x!) = (x+1/2)\lg x-x\lg e+O(1)...= \Theta(xlgx) \\ let\ x = \lg n \\ (\lg n)! = x! = 2^{\lg x!} \\ 2^{(x+1/2)\lg x-x\lg{e}}=2^{\lg x^{(x+1/2)}}\cdot 2^{-x\lg e}=x^{x+1/2}\cdot 2^{-x\lg e} \\ =\frac{1}{n^{\lg e}}\lg n^{\lg{n}+1/2}=\frac{\sqrt{\lg{n}}}{n^{\lg e}}\lg{n}^{\lg{n}}\le \lg{n}^{\lg{n}}$ **迭代對數** ![](https://i.imgur.com/LA4Ht4Z.png) #### b. 【解題思路】 When even $2^{2^{n+2}}$ grows faster than $g_i(n)$ and when odd $\frac{1}{n}$ is grows slower than $g_i(n)$. Therefore $f(n)$ is neither $O(g_i(n))$ nor $\Omega(g_i(n))$. \begin{align*} f(n)= \begin{cases} 2^{2^{n+2}} & \text{if $n$ is even},\\ \frac{1}{n} & \text{if $n$ is odd}. \end{cases} \end{align*} ### Q4 > - [name=Chung] ![](https://i.imgur.com/HwQCd6J.png) #### a. $\text{ Disprove.}$ $\text{ Let } f(n) = n ,\ g(n) = n^{2}.n=O(n^{2}) \ but \ n^{2} ≠ O(n).$ #### b. $\text{ Disprove.}$ $\text{ Let } f(n) = n ,\ g(n) = n^{2}.n+n^{2} ≠ \Theta(min(n^{2}, n))\ = \Theta(n).$ #### c. $\text{ Prove.}$ $\ f(n) = O(g(n)) \ means \ 0 \le \ f(n) \le \ c\cdot\ g(n) \ for \ all \ n≥n_0 \,\ for \ some \ constants\ c, \ n_0\ >\ 0\\ \text{Thus,} \ 0 \le \ lg({f(n)}) \le \ lgc + lg({g(n)}) \le \ k \cdot\ lg({g(n)}) \\ 0 \le \ lg({f(n)}) \le \ k \cdot\ lg({g(n)})\\ \text{Therefore,} \ lg({f(n)}) = O(lg({g(n)})) .$ #### d. $\text{ Disprove.}$ $\text{ Let } f(n) = 2n ,\ g(n) = n.\ 2n = O(n) \ \text{Thus,}\ 2^{2n} = 4^n ≠ O(2^n).$ #### e. $\text{ Disprove.}$ $\ ∃c,n_0:∀n≥n_0, \ 0 \le \ f(n) \le \ c\cdot\ f(n)\cdot\ f(n)\ \ \text{However,} \ if \ f(n)<1,\ for \ all \ n\\ This \ conjecture \ does \ not \ hold .$ #### f. $\text{ Prove.}$ $\ 0 \le \ f(n) \le \ c\cdot\ g(n)\ for \ all \ n≥n _0\ such \ that \ the \ constants \ c, \ n_0 > 0 \\ g(n) = Ω(f(n))\ means \ 0\le \ \frac{1}{c} \cdot\ f(n)\le \ g(n)\\ \text{Thus,}\ 成立.$ #### g. $\text{ Disprove.}$ $\text{ Let } f(n) = 4^n ,\ f( \frac{n}{2} ) = 4^\frac{n}{2} \\ \text{Thus,}\ 4^n ≠ \Theta(4^\frac{n}{2}) = \Theta(2^n).$ #### h. $\text{ Prove.}$ $\text{ Let } g(n) = o(f(n)) ,\ f(n) + g(n) = \Theta(f(n))\\ 0 \le \ g(n) \le \ c\cdot\ f(n)\ for \ all \ n≥n_ 0\ such \ that \ the \ constants \ c, \ n_0 > 0 \\ f(n) \le \ f(n)+g(n) \le \ c\cdot\ f(n) + f(n) = (c+1)\cdot f(n)\\ \text{Thus, }\ f(n)+ o(f(n)) = \Theta(f(n)).$ #### i. $\text{ Disprove.}$ $\text{ Let } f(n) = sin(n)+2 = \Theta(1) ,\ g(n) = 1 \\ \frac{f(n)}{g(n)} = sin(n)+2 \\ lim\frac{f(n)}{g(n)} \ is \ divergence \ limit.$ > 題目有誤 > ![](https://i.imgur.com/rzAqN4g.png) ### Q5 > - [name=Xian] ![](https://i.imgur.com/fyr1qEY.png) $\begin{aligned} T(n)&=2T(\sqrt{n})+1 \qquad let\ m = \lg{n},\ n = 2^m\\ T(2^m)&=2T(2^\frac m2)+1 \qquad let\ S(m) = T(2^m)\\ S(m)&=2S(\frac m2)+1\\ \end{aligned}$ #### 【解1】 $\text {By Master Theorem, k=0 a= 2 b= 2}\implies k < log_{2}{2} = 1$ $\begin{aligned} \therefore S(m)&=\Theta(m^{log_{2}{2}})=\Theta(m)\\ T(2^m)&=\Theta(m)\\ T(n)&=\Theta(\lg{n})_\# \end{aligned}$ #### 【解2】 (我不確定是不是對的) $\text{Suppose }\color{red}{S(m)\leq cm+d,}\\ \begin{aligned} S(m)&\leq 2(c\frac m2 + d)+1\\ &\leq cm+2d+1 \qquad(d\leq-1)\\ &\leq cm+d \end{aligned}$ $\text{Then, suppose }\color{red}{S(m)\geq cm+d,}\\ \begin{aligned} S(m)&\geq 2(c\frac m2 + d)+1\\ &\geq cm+2d+1 \qquad(d\geq-1)\\ &\geq cm+d\\ \text{Thus, }&S(m) = \Theta(m)\\ &T(n)=\Theta(\lg{n})_\# \end{aligned}$ ### Q6 > - [name=songchiu] ![](https://i.imgur.com/iY1CgsW.png) #### Master Theorem ![](https://i.imgur.com/ifHrmeC.png) #### a. $a = 2,\; b = 2,\; f(n)=n^3$ $\text{By Master Theorem, } \Theta(n^3)$ #### b. $a = 1,\; b = \dfrac{10}{9},\; f(n)=n$ $\text{By Master Theorem, } \Theta(n)$ #### c. $a = 16,\; b = 4,\; f(n)=n^2$ $\text{By Master Theorem, } \Theta(n^2 \; log\; n)$ #### d. $a = 7,\; b = 3,\; f(n)=n^2$ $\text{By Master Theorem, } \Theta(n^2)$ #### e. $a = 7,\; b = 2,\; f(n)=n^2$ $\text{By Master Theorem, } \Theta(n^{log_2 \; 7})$ #### f. $a = 2,\; b = 4,\; f(n)=\sqrt{n}$ $\text{By Master Theorem, } \Theta(\sqrt{n} \times log\; n)$ #### g. $n + (n-1) + (n-2) + ... + 1 = \Theta(n^2)$ #### h. $T(n) = T(n^{\frac{1}{2}}) + 1 = T(n^{\frac{1}{4}}) + 2 = T(n^{\frac{1}{8}}) + 3 = ... = T(n^{\frac{1}{2^k}}) + k$ $\text{Let } n = 2^{2^k},\;log \; n = 2^k , \; k=log \; log \; n , \; T(n) = \Theta(log \; log \; n)$ ref: [Master Theorem](https://www.programiz.com/dsa/master-theorem) ### Q7 > - [name=Xian & Mark(我只負責打字Q)] ![](https://i.imgur.com/96DhHjo.png) #### a. $T(n) = 4T(\frac{n}{3}) + n lg n$ $\text{By Master Theorem, }$ $a = 4, b = 3, f(n) = n lg n$ $1 < log_{3}{4} < 2$ $\because f(n) = O(n^{log_{3}{4-ε}})$ $\therefore T(n) = \Theta(n^{log_{3}{4}})_\#$ #### b. $\begin{aligned} T(n)&=3T(\frac{n}{3})+\frac{n}{lg{n}} \\ &=3(3T(\frac{n}{9})+\frac{\frac{n}{3}}{lg\frac{n}{3}})+\frac{n}{lg{n}} \\ &=9T(\frac{n}{9})+\frac{n}{lg{n}-log{3}}+\frac{n}{lg{n}} \\ &=9(3T(\frac{n}{27})+\frac{\frac{n}{9}}{lg\frac{n}{9}})+\frac{n}{lg{n}-log{3}}+\frac{n}{lg{n}} \\ &=27T(\frac{n}{27})+\frac{n}{lg{n}-2lg{3}}+\frac{n}{lg{n}-lg{3}}+\frac{n}{lg{n}} \\ &=... \\ &=nT(\frac{n}{n})+\sum\limits_{i=0}^{log_{3}{n}-1}\frac{n}{lg{n}-ilg{3}} \\ &=nT(1)+\sum\limits_{i=1}^{log_{3}{n}}\frac{n}{lg{n}-(i-1)lg{3}} \quad (n=3^k, k=log_{3}{n}) \\ &=nT(1)+\sum\limits_{i=1}^{k}\frac{n}{k-(i-1)lg{3}} \qquad \; (\because \sum\limits_{i=0}^{k-1}\frac{1}{k-i} \approx log{k} \; \therefore k=log_{3}{n}) \\ &=\Theta(nlog{log_{3}{n}})\\ &=\Theta(nlg{lgn})_\# \end{aligned}$ #### c. $\begin{aligned} T(n)&=4T(\frac{n}{2})+n^2\sqrt{n} \\ &=4T(\frac{n}{2})+n^\frac{5}{2} \\ \end{aligned}$ $\text{By Master Theorem, } a=4 \;\; b=2 \;\; c=\frac{5}{2}$ $log_{b}{a}=log_{2}{4}=2$ $f(n)=n^{2+\frac{1}{2}}=O(n^{log_{2}{4}+ε})$ $T(n)=\Theta(f(n))=\Theta(n^{2.5})$ ![](https://i.imgur.com/BjQuw9E.png) $4f(\frac{n}{b}) \leq cf(n)$ $\begin{aligned} 4f(\frac{n}{2})&=4(\frac{n}{2})^{\frac{5}{2}} \\ &=4n^{\frac{5}{2}}\cdot2^{-\frac{5}{2}} \\ &=2^2 \cdot 2^{-\frac{5}{2}} \cdot n^{\frac{5}{2}} \\ &=2^{-\frac{1}{2}} \cdot n^{\frac{5}{2}} \\ &\leq cf(n) \end{aligned}$ $\because c \geq \frac{1}{\sqrt 2}\text{即成立}$ $\therefore c<1 \text{成立}$ #### d. $\begin{aligned} T(n)&=3T(\frac{n}{3}-2)+\frac{n}{2} \\ &\approx =3T(\frac{n}{3})+\frac{n}{2} \end{aligned}$ $\text{By Master Therom, } \; a=3 \; b=3 \; c=1$ $log_{3}{3}=1 \; f(n)=n^1=\Theta (n^{log_{3}{3}})$ $T(n)=\Theta (nlgn)_\#$ #### e. $\begin{aligned} T(n)&=2T(\frac{n}{2})+\frac{n}{lg{n}} \\ &=2(2T(\frac{n}{4})+\frac{\frac{n}{2}}{lg\frac{n}{2}})+\frac{n}{lg{n}} \\ &=4T(\frac{n}{4})+\frac{n}{lg{n}-log{2}}+\frac{n}{lg{n}} \\ &=... \\ &=nT(\frac{n}{n})+\sum\limits_{k=0}^{log_{3}{n}-1}\frac{n}{lg{n}-k} \\ &=nT(1)+\sum\limits_{k=1}^{lg{n}}\frac{n}{lg{n}} \\ &=\Theta(nlg{lg{n}})_\# \end{aligned}$ #### f. $T(n)=T(\frac{n}{2})+T(\frac{n}{4})+T(\frac{n}{8})+n$ $\text{Suppose} \; T(n) \leq Cn,$ $\begin{aligned} T(n) &\leq C\frac{n}{2}+C\frac{n}{4}+C\frac{n}{8}+n=\frac{7}{8}Cn+n \\ &\leq Cn(n \geq 8) = O(n) \end{aligned}$ $\text{Suppose} \; T(n) \geq Cn,$ $\begin{aligned} T(n) &\geq C\frac{n}{2}+C\frac{n}{4}+C\frac{n}{8}+n=\frac{7}{8}Cn+n \\ &\geq Cn(n \leq 8) = \Omega(n) \end{aligned}$ $T(n)=\Theta(n)$ #### g. $\begin{aligned} T(n)&=T(n-1)+\frac{1}{n} \\ &=T(n-2)+\frac{1}{n-1}+\frac{1}{n} \\ &=... \\ &=\sum\limits_{i=0}^{n-1}{\frac{1}{n-i}}\\ &=\sum\limits_{i=1}^{n}{\frac{1}{i}}\\ &= \Theta(lgn) \end{aligned}$ #### h. $\begin{aligned} T(n)&=T(n-1)+lgn \\ &=T(n-2)+lg{(n-1)}+lgn \\ &=... \\ &=\sum\limits_{i=0}^{n-1}{lg{(n-i)}} =\sum\limits_{i=1}^{n}{lg{(n)}} \\ &=lg(n!) \leq lg{n^n}=nlgn=\Theta(nlgn) \\ \end{aligned}$ $\text{Or By Stirling's Formula,} \;\; lg(n!)=\Theta(nlgn)$ #### i. $\begin{aligned} T(n)&=T(n-2)+\frac {1}{lgn} \\ &=T(n-4)+\frac {1}{lg{(n-2)}}+\frac {1}{lgn} \\ &=... \\ &\implies T(2)+\sum\limits_{k=2}^{\frac{n}{2}}{\frac{1}{lg{2k}}} \;\; n \;\;is \;\; even \\ &\implies T(1)+\sum\limits_{k=2}^{\frac{n-1}{2}}{\frac{1}{lg{2k}}} \;\; n \;\; is \;\; odd\\ \end{aligned}$ <!-- :::spoiler 請點開附圖(我有看懂,但我不知道不要把這個寫到過程 by Mark) ![](https://i.imgur.com/1e957Ph.png) ::: --> $\begin{aligned} T(n)&= \left\{ \begin{array}{c} T(2)+\sum\limits_{k=2}^{\frac{n}{2}}{\frac{1}{lg{2k}}} \;\; n \;\;is \;\; even \\ T(1)+\sum\limits_{k=2}^{\frac{n-1}{2}}{\frac{1}{lg{2k}}} \;\; n \;\; is \;\; odd\\ \end{array} \right. \\ &=\Theta(1)+O(\frac {n}{lgn}) \quad li(x)=\int_0^x \frac{dy}{ln(y)} \implies li(x)=O(\frac{x}{ln(x)})\\ &=O(\frac {n}{lgn}) \end{aligned}$ #### j. $T(n)=\sqrt n T(\sqrt n)+n \quad let \;\; n=2^m \;\; m=lgn$ $T(2^m)=2^{\frac{m}{2}}T(2^{\frac{m}{2}})+2^m$ $\frac {T(2^m)}{2^m}= \frac {T(2^{\frac{m}{2}})}{2^{\frac {m}{2}}}+1\quad let\ Q(m)=\frac{T(2^m)}{2^m}$ $\text {By Master Therom,} \; Q(m)=Q(\frac {m}{2})+1 \;\; a=1 \;\; b=2 \;\; c=0 \;\;n^0 = n^{log_{2}{1}}$ $\because f(m)=\Theta(m^{log_{2}{1}}) \implies \therefore Q(m)=\Theta(lgm)=\frac{T(2^m)}{2^m}$ $T(2^m)=2^mQ(m)=2^m\Theta(lgm)=\Theta(2^mlgm)$ $m=lgn \text{代回} \implies T(n)=\Theta(nlglgn)_\#$ #### k. $\begin{aligned} T(n)&=\sqrt nT(n-1)+n \\ &=\sqrt n(\sqrt {n-1}T(n-2)+n-1)+n \\ &=\sqrt n\sqrt {n-1}T(n-2)+\sqrt nn-\sqrt n+n \\ &=... \\ &=\sqrt n \sqrt{n-1}...\sqrt 2 \sqrt 1 \cdot T(n-n)+n^{\frac {5}{2}}+n-n^{\frac {5}{2}}+n^{\frac {3}{2}} \\ &=\sqrt {n!}+\Theta(n^{\frac {5}{2}}) \implies \text {By Stirling's Formula, } =O(n^{\frac {n}{2}})\\ \end{aligned}$