--- title: algorithm VII description: 第七次作業 --- # Group 2 組員:王承隆、賴文宏、施宗佑、王昱翔、王柏喬、莊淳方、傅文宗 # Problem 1 ## Topic Determine the cost and structure of an optimal binary search tree for a set of $n = 7$ keys with the following probabilities ## Solution ![](https://i.imgur.com/qiQqkZP.jpg) ![](https://i.imgur.com/zaSGQz3.jpg) ```graphviz digraph Tree{ k5->k2 k5->k7 k2->k1 k2->k3 k7->k6 k3->k4 k7->d7 k1->d0 k1->d1 k3->d2 k6->d5 k6->d6 k4->d3 k4->d4 } ``` # Problem 2 [CLRS 3 rd ] Exercise 15.5-4 ## Topic Knuth [212] has shown that there are always roots of optimal subtrees such that $root[i, j−1]≤root[i,j]≤root[i+1,j] root[i, j - 1]$ for all $1≤i<j≤n$ Use this fact to modify the OPTIMAL-BST$\Theta(n^2)$ time. ## Solution ``` OPTIMAL-BST let e[1...n+1, 0...n], w[1..n+1, 0..n], and root[1..n, 1..n] be new tables for i = 1 to n +1 e[i, i-1] = q_(i-1) w[i, i-1] = q_(i-1) for l = 1 to n for i = 1 to n - l + 1 location 6 j = i + l -1 e[i, j] = INFINITE w[i, j] = w[i, j-1] + p_j + q_j line 10 for r = i to j t = e[i, r-1] + e[r+1, j] + w[i, j] if t < e[i, j] e[i, j] = t root[i, j] = r return e and root ``` The loop at line 10 is meant to find the best root of the subtree. We can us the prorperty the problem give to change the loop at line 10 to for $r = r[i, j - 1]$ to $r[i + 1, j]$ First, suppose i = 1, j = 3 then we have the loop for $r = r[1, 2]$ to $r[2, 3]$ Second, on the next iteration of the loop at location 6 we have i = 2, j = 4 and for $r = r[2, 3]$ to $r[3, 4]$ Comparing the range of r in the two iteration, we find ==their ranges have nothing to do with n.== Thus, the time complexity, $O(n^3)$, is redeuced to $O(n^2)$ # Problem 3 [CLRS 3 rd ] Exercise 16.1-3 ## Topic ## Solution 1. {(0,10),(8,12),(11,16),(15,18),(17,25)} always peek the shortest {(8,12),(15,18)} but there is a better solution {(0,10),(11,16),(17,25)} 2. {(0,3),(2,4),(2,4),(3,6),(5,7),(6,8),(7,10),(7,10),(7,10),(9,11),(9,11)} always peek the one overlaps the fewest Get: {(0,3),(5,7),(9,11)} Best: {(0,3),(3,6),(6,8),(9,11)} 3. {(0,10),(6,7),(8,13)} always peek the earliest Get: {(0,10)} Best: {(6,7),(8,13)} # Problem 4 [CLRS 3 rd ] Exercise 16.1-4 ## Topic ## Solution ```Pseudo= Scheduling(activities[1..n]){ calculating the maximal overlap of the activities, which is the minimum of halls we need suppose the maximal overlap is m for i = 1 to n for j = 1 to m if(the end of the last activity in jth hall is later than the start of ith activity) check (j+1)th hall else put ith activity in jth hall return scheduling of 1..nth hall } ``` ```c++= #include <iostream> #include <vector> #include <tuple> #include <algorithm> using namespace std; bool comp1(tuple<int, int> t1, tuple<int, int> t2){ return (get<1>(t1) <= get<1>(t2)); } bool comp2(tuple<int, int> t1, tuple<int, int> t2){ if(get<0>(t1) < get<0>(t2)) return 1; else if(get<0>(t1) > get<0>(t2)) return 0; else return (get<1>(t1) <= get<1>(t2)); } vector<vector<tuple<int, int>>> scheduling(vector<tuple<int, int>> activities){ int hall, activity; sort(activities.begin(), activities.end(), comp2); //calculating the maximal overlap int overlap = 0; for(int i = 1, counter = 1, currentEnd = get<1>(activities[0]), endIndex = 0;i < activities.size();i++){ if(get<0>(activities[i]) < currentEnd){ if(overlap < ++counter) overlap = counter; } else{ while(get<0>(activities[i]) >= get<1>(activities[endIndex])){ counter--; endIndex++; } currentEnd = get<1>(activities[endIndex]); } } vector<vector<tuple<int, int>>> halls(overlap, vector<tuple<int, int>>(0)); sort(activities.begin(), activities.end(), comp1); for(int i = 0, j, start, end;i < activities.size();i++){ start = get<0>(activities[i]); for(j = 0;j < halls.size();j++){ if(halls[j].empty()){ halls[j].push_back(activities[i]); break; } end = get<1>(halls[j][halls[j].size() - 1]); if(start < end) continue; else{ halls[j].push_back(activities[i]); break; } } } return halls; } int main(){ vector<tuple<int, int>> activities; int start, end, i, j; while(cin >> start >> end) activities.push_back(make_tuple(start, end)); vector<vector<tuple<int, int>>> halls = scheduling(activities); for(i = 0;i < halls.size();i++){ cout << "hall" << i + 1 << ": "; for(j = 0;j < halls[i].size();j++) cout << '(' << get<0>(halls[i][j]) << ", " << get<1>(halls[i][j]) << ")\t"; cout << endl; } } ``` # Problem 5 [CLRS 3 rd ] Exercise 16.1-5 (Hint: refer to Exercise 16.1-1) ## Topic ## Solution ```Pseudo Solution(intervals[1..n]){ //intervals[i] = (start::int, end::int, value::int) sort intervals by end int max[intervals[n].end + 1] // record the maximum in ith moment for(i = 0, j = 0;i < n;i++, j++){ if(i > 0 and intervals[i].end == intervals[i - 1].end) j--; for(;j < intervals[i].end;j++) max[j] = max[j - 1]; if(intervals[i].value + max[intervals[i].end] > max[j - 1]) max = intervals[i].value + max[intervals[i].start]; else max = max[j - 1]; return max[intervals[n - 1].end] } ``` ```c++= #include <iostream> #include <vector> #include <tuple> #include <algorithm> using namespace std; bool comp(tuple<int, int, int> t1, tuple<int, int, int> t2){ if(get<1>(t1) < get<1>(t2)) return 1; else if(get<1>(t1) > get<1>(t2)) return 0; else{ if(get<2>(t1) < get<2>(t2)) return 1; else return 0; } } int maximum(vector<tuple<int, int, int>> intervals){ int i, j; sort(intervals.begin(), intervals.end(), comp); int max[get<1>(intervals[intervals.size() - 1]) + 1] = {}; for(i = 0, j = 1;i < intervals.size();i++, j++){ if(i > 0 && get<1>(intervals[i]) == get<1>(intervals[i - 1])) j--; for(;j < get<1>(intervals[i]);j++) max[j] = max[j - 1]; max[j] = get<2>(intervals[i]) + max[get<0>(intervals[i])] > max[j - 1] ? get<2>(intervals[i]) + max[get<0>(intervals[i])] : max[j - 1]; } for(i = 0;i < get<1>(intervals[intervals.size() - 1]) + 1;i++) cout << max[i] << ' '; cout << endl; return max[get<1>(intervals[intervals.size() - 1])]; } int main(){ int start, end, value; vector<tuple<int, int, int>> intervals; cout << "input start, end and value, respectively" << endl; while(cin >> start >> end >> value) intervals.push_back(make_tuple(start, end, value)); cout << maximum(intervals) << endl; } ``` # Problem 6 A variation from [CLRS 3 rd ] Exercise 16.2-2 Given a 0-1 knapsack problem with the knapsack size K and n items, where each item has its weight in integer and its value in real. (a) Design an algorithm to find the most valuable load of the items that fit into the knapsack. (b) Design a pseudo-polynomial time algorithm to determine the optimal solution that the total weight exactly equals to K. ## Topic ## Solution ### (a) ```Pseudo= KNAPSACK(W, set) Initialize an (n + 1) by (W + 1) table for i = 0 to n //0 to ith items for j = 0 to W // current weight limit if i==0 || w=0 table[i][w] = 0; else if set[i-1].weight <= w table[i][w] = max(set[i-1].value + table[i-1][w-set[i-1].weight], table[i-1][w]) else table[i][w] = table[i-1][w] ``` ```=C++ #include<iostream> #include<vector> using namespace std; int max(int a, int b) { return (a > b)? a : b; } struct item{ int value; int weight; }; void knapSack(int W, vector<item>set) { int i, w, n=set.size(); int table[n+1][W+1]; for (i = 0; i <= n; i++) //0 to ith items { for (w = 0; w <= W; w++) // current weight limit { if (i==0 || w==0) table[i][w] = 0; else if (set[i-1].weight <= w) //compare the profits of putting it in or not table[i][w] = max(set[i-1].value + table[i-1][w-set[i-1].weight], table[i-1][w]); else//item weight beyond limit table[i][w] = table[i-1][w]; } } cout<< table[n][W]<<endl; for (int i = n-1, j = W; i >= 0; --i) //solution if (j - set[i].weight >= 0 && table[i+1][j] == table[i][j - set[i].weight] + set[i].value) { cout <<i<<endl; j -= set[i].weight; } } int main() { int maximum_weight, weight, value; vector<item>collection; cin>>maximum_weight; while(cin>>value>>weight) collection.push_back(item{value, weight}); knapSack(maximum_weight,collection); return 0; } ``` ### (b) ```Pseudo= KNAPSACK(W, set) Initialize an (n + 1) by (W + 1) table for i = 0 to n //0 to ith items for j = 0 to W // current weight limit if (set[i-1].weight <= w) //compare the profits of putting it in or not if(w == 0 || i == 0){} else if(set[i - 1].value + table[i - 1][w - set[i - 1].weight].value > table[i - 1][w].value) table[i][w].value = set[i - 1].value + table[i - 1][w - set[i - 1].weight].value table[i][w].last.value = i - 1 table[i][w].last.weight = w - set[i - 1].weight else table[i][w].value = table[i - 1][w].value table[i][w].last.value = table[i - 1][w].last.value table[i][w].last.weight = table[i - 1][w].last.weight else if(set[i - 1].weight > w) //item weight beyond limit table[i][w].value = table[i-1][w].value table[i][w].last.value = table[i - 1][w].last.value table[i][w].last.weight = table[i - 1][w].last.weight ``` ```=C++ #include<iostream> #include<vector> #include <stack> using namespace std; int max(int a, int b) { return (a > b)? a : b; } struct item{ int value = 0; int weight = 0; }; struct item2{ int value = 0; item last; }; void knapSack(int W, vector<item>set) { int i, w, n=set.size(); item2 table[n+1][W+1]; for (i = 0; i <= n; i++) //0 to ith items { for (w = 0; w <= W; w++) // current weight limit { if (set[i-1].weight <= w) //compare the profits of putting it in or not if(w == 0 || i == 0){} else if(set[i - 1].value + table[i - 1][w - set[i - 1].weight].value > table[i - 1][w].value){ table[i][w].value = set[i - 1].value + table[i - 1][w - set[i - 1].weight].value; table[i][w].last.value = i - 1; table[i][w].last.weight = w - set[i - 1].weight; } else{ table[i][w].value = table[i - 1][w].value; table[i][w].last.value = table[i - 1][w].last.value; table[i][w].last.weight = table[i - 1][w].last.weight; } else if(set[i - 1].weight > w){//item weight beyond limit table[i][w].value = table[i-1][w].value; table[i][w].last.value = table[i - 1][w].last.value; table[i][w].last.weight = table[i - 1][w].last.weight; } } } stack<int> index; for(i = 0;i <= n;i++){ for(w = 0;w <= W;w++) cout << '(' << table[i][w].value << ", " << table[i][w].last.value << ", " << table[i][w].last.weight << ')'; cout << endl; } for(int k = n;k > 0;k--){ for(i = table[k][W].last.value, w = table[k][W].last.weight;i > 0 && w > 0;i = table[i][w].last.value, w = table[i][w].last.weight){ index.push(i); } if(w == 0){ index.push(i); cout << table[k][W].value << endl; while(!index.empty()){ cout << index.top() << ' '; index.pop(); } cout << endl; return; } else if(i == 0){ while(!index.empty()) index.pop(); break; } } cout << "No answer" << endl; } int main() { int maximum_weight, weight, value; vector<item>collection; cin>>maximum_weight; while(cin>>value>>weight) collection.push_back(item{value, weight}); knapSack(maximum_weight,collection); return 0; } ``` # Problem 7 [CLRS 3 rd ] Exercise 16.2-6 ## Topic Give a dynamic-programming solution to the 0-1 knapsack problem that runs in **$O(nW)$** time, where n is the number of items and W is the maximum weight of items that the thief can put in his knapsack. ## Solution Same as Problem 6(a) # Problem 8 ## Topic Given a set S of n integers and another integer M, determines whether or not there exist k elements in S whose sum is exactly M. k is an input parameter. 這題要寫Pseudo Code Hint: DP定義: dp[i][j][k]代表從前i個數字取j個數字湊出k, 若可以湊填1, 否則填0 遞迴式: dp[i][j][k] = dp[i-1][j][k] || dp[i-1][j-1][k-S[i]], if k-S[i] >=0 = dp[i-1][j][k], if k-S[i] < 0 ## Soluation ```pseudocode= #define notFound null function(Set S, int M, string key = "", int index = 0){ define static dynamic table DP<string, int>; // storage the other result DP[""] = 0; forEach((el, i) in S start with index) DP[key+str(el)] = DP[key] + el; if(DP[key+str(el)]==M) return key+str(el); if(index<S.length) function(S, M, key+str(el)+" ", i+1); }); return notFound; } str(any var){ return stringType(var); } ```