# IHC paper ###### tags: `IHC_paper` # Model dataset - veri776,veri776_synreal,veriwild,veriwild_synreal  - on TWCC - 在國網 VeRi_syn 的 image_test_hazy 是 image_test_b0b5 - hazy: b0b5, synreal: b0~b2 (random), syn: b0-b3 # 我分的haze datset # My question - how to compare - train on veri_synreal - train on wild_synreal - train on wild_clear # ImageNet http://www.image-net.org/download-images # Things have not run yet - run b # Code have not run yet - RAM VEHICLE RE-IDENTIFICATION - paper:https://arxiv.org/pdf/1806.09283.pdf - code : https://arxiv.org/pdf/1806.09283.pdf - VOC-ReID - paper: https://arxiv.org/pdf/2004.09164.pdf - code:https://github.com/Xiangyu-CAS/AICity2020-VOC-ReID - Baidu-UTS - paper: - code : https://github.com/layumi/AICIty-reID-2020 # syn veri_wild dataset - depth : /mnt/190/a/Cihsiang/ReID/Dataset/VERI_WILD_hazehelp/images_all_depth_outdoor/ - folder name :veriwild_syn_real - make haze(syn) code: - /mnt/190/a/Cihsiang/ReID/1.Make_Depth/VeRi_Syn_hazy/dense_haze_OTS_veri_train_synreal.m" # Code have not run - DMT - reuslt path:/work/r09921058/ReID_dehazeREID/ReID_inference/Inference_veri_synreal/ # Hackmd # old data pretrain on b0_epoch80 - x * DMT Train on veri_syn_b0 - TEST_SYN_b0: | map | cmc1 | cmc5 | cmc10 | |:---- |:---- |:---- |:----- | | 81.1 | 96.6 | 98.6 | 99.2 | - TEST_SYN_b1: | map | cmc1 | cmc5 | cmc10 | |:---- |:---- |:---- |:----- | | 69.6 | 92 | 97 | 98.4 | - TEST_SYN_b2: | map | cmc1 | cmc5 | cmc10 | |:---- |:---- |:----- |:----- | | 59.7 | 88.5 | 94.30 | 96.5 | - TEST_SYN_b3: | map | cmc1 | cmc5 | cmc10 | | ---- |:---- |:---- |:----- | | 50.5 | 84.3 | 91.5 | 94.8 | * DMT Train on veri_syn_b1 - TEST_SYN_b1: | map | cmc1 | cmc5 | cmc10 | | ---- |:---- | ---- |:----- | | 78.5 | 96.1 | 98.5 | 99.2 | * DMT Train on veri_syn_b2 - TEST_SYN_b2: | map | cmc1 | cmc5 | cmc10 | | ---- |:---- | ---- |:----- | | 76.4 | 95.5 | 97.9 | 98.8 | * DMT Train on veri_syn_b3 - TEST_SYN_b3: | map | cmc1 | cmc5 | cmc10 | | --- |:---- |:---- |:----- | | 73 | 94.7 | 97.6 | 98.7 | * DMT Train on veri_syn_b4 - TEST_SYN_b3: | map | cmc1 | cmc5 | cmc10 | | --- |:---- |:---- |:----- | | 73 | 94.7 | 97.6 | 98.7 | * DMT Train on veri_syn_b5 - TEST_SYN_b3: | map | cmc1 | cmc5 | cmc10 | | --- |:---- |:---- |:----- | | 73 | 94.7 | 97.6 | 98.7 | # Paper survey ## Aicity 2019 - https://openaccess.thecvf.com/content_CVPRW_2019/papers/AI%20City/Naphade_The_2019_AI_City_Challenge_CVPRW_2019_paper.pdf ## Aicity 2020 -  * Multi-Domain Learning and Identity Mining for Vehicle Re-Identification(CVPR 2020 Workshop) *  * resNet pretrain 80 * 100 epoches * inb_a :https://github.com/XingangPan/IBN-Net ## multi task or part mask -(no code) https://openaccess.thecvf.com/content_CVPR_2019/papers/He_Part-Regularized_Near-Duplicate_Vehicle_Re-Identification_CVPR_2019_paper.pdf # RBSM - 要改./configs (add .yml) - sh train_veh1m_wild.sh # How to compare - loss - SOTA method # MSBDN result - image_query_syn - ===> Avg. SR SSIM: 0.9281 - Avg. SR PSNR:23.537345 dB - image_query_synreal - ===> Avg. SR SSIM: 0.9115 - Avg. SR PSNR:22.640361 dB
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up