# 代數導論二 Week 5 (Part 3) - Field of Fraction
[TOC]
## 定義:
:::warning
Suppose that $R$ is an integral domain, let
$$
D = R \setminus \{0\}
$$
Let
$$
S = \{(a, b) \mid a \in R, b \in D\}
$$
:::
## 定義:Fraction
:::warning
Define a binary relation $\sim$ on $S$ by
$$
(a_1, b_1) \sim (a_2, b_2) \iff a_1b_2 = b_1a_2
$$
Observe that $\sim$ is an equivalent relation. Define
$$
\text{Frac}(R) = S /\sim
$$
:::
## 定義:加法
:::warning
Define addition on $[(a, b)], [(c, d)] \in \text{Frac}(R)$ as:
$$
[(a, b)] + [(c, d)] = [(ad + bc, bd)]
$$
:::
### 觀察
:::danger
1. Both addition and production are well-defined
2. Addition is commutative
3. Addition os associative
4. $[(0, 1)]$ is the identity for addition.
5. $[(-a, b)] + [(a, b)] = [(0, 1)]$
:::
## 定義:乘法
:::warning
Define production on $[(a, b)], [(c, d)] \in \text{Frac}(R)$ as:
$$
[(a, b)] \cdot [(c, d)] = [(ac, bd)]
$$
:::
### 觀察:
:::danger
1. Multiplication is well-defined
2. Multipliation is commutative
3. Multiplication is associative
4. Distribution law
5. $[(1, 1)]$ is the identity of multiplication
:::
### 觀察:所有元素都有乘法反元素
:::danger
Suppose that
$$
[(a, b)] \in \text{Frac}(R) \setminus\{0\}
$$
Then
$$
[(a, b)] \cdot [b, a) = 1_{\text{Frac}(R)}
$$
:::
## 定義:Field of Fraction
:::warning
$\text{Frac}(R)$ is called the field of fractions of $R$
:::
## 定理:Universal Property
:::danger
Suppose that $Q = \text{Frac}(R)$. Let $F$ be a field and
$$
i : R \to \mathcal F
$$
an injective ring homomorphism, then $i$ factor through $Q$ i.e. let
$$
\begin{align}
c : R &\to Q
\newline
r &\mapsto [(r, 1)]
\end{align}
$$
Then there exists unique unital homomorphism $\tilde i$:
$$
\begin{align}
\tilde i: Q &\to \mathcal F
\end{align}
$$
Such that
$$
i = c \circ \tilde i
$$
Or in commutative diagram:
$$
\require{AMScd}
\begin{CD}
R @>c>> {\text{Frac}{(F)}}\\
@. {\searrow} @VV {\tilde i} V\\
@.F
\end{CD}
$$
:::
Let
$$
[(a, b)] \to i(a)i(b)^{-1}
$$
Suppose that $[(a, b)] \sim [(a', b')]$, then
$$
i(ab)
$$
### 推論:
:::danger
Let $R$ be a integral domain. Then every fields containing $R$ contains $\text{Frac}(R)$
:::