# 代數導論二 Week 5 (Part 3) - Field of Fraction [TOC] ## 定義: :::warning Suppose that $R$ is an integral domain, let $$ D = R \setminus \{0\} $$ Let $$ S = \{(a, b) \mid a \in R, b \in D\} $$ ::: ## 定義:Fraction :::warning Define a binary relation $\sim$ on $S$ by $$ (a_1, b_1) \sim (a_2, b_2) \iff a_1b_2 = b_1a_2 $$ Observe that $\sim$ is an equivalent relation. Define $$ \text{Frac}(R) = S /\sim $$ ::: ## 定義:加法 :::warning Define addition on $[(a, b)], [(c, d)] \in \text{Frac}(R)$ as: $$ [(a, b)] + [(c, d)] = [(ad + bc, bd)] $$ ::: ### 觀察 :::danger 1. Both addition and production are well-defined 2. Addition is commutative 3. Addition os associative 4. $[(0, 1)]$ is the identity for addition. 5. $[(-a, b)] + [(a, b)] = [(0, 1)]$ ::: ## 定義:乘法 :::warning Define production on $[(a, b)], [(c, d)] \in \text{Frac}(R)$ as: $$ [(a, b)] \cdot [(c, d)] = [(ac, bd)] $$ ::: ### 觀察: :::danger 1. Multiplication is well-defined 2. Multipliation is commutative 3. Multiplication is associative 4. Distribution law 5. $[(1, 1)]$ is the identity of multiplication ::: ### 觀察:所有元素都有乘法反元素 :::danger Suppose that $$ [(a, b)] \in \text{Frac}(R) \setminus\{0\} $$ Then $$ [(a, b)] \cdot [b, a) = 1_{\text{Frac}(R)} $$ ::: ## 定義:Field of Fraction :::warning $\text{Frac}(R)$ is called the field of fractions of $R$ ::: ## 定理:Universal Property :::danger Suppose that $Q = \text{Frac}(R)$. Let $F$ be a field and $$ i : R \to \mathcal F $$ an injective ring homomorphism, then $i$ factor through $Q$ i.e. let $$ \begin{align} c : R &\to Q \newline r &\mapsto [(r, 1)] \end{align} $$ Then there exists unique unital homomorphism $\tilde i$: $$ \begin{align} \tilde i: Q &\to \mathcal F \end{align} $$ Such that $$ i = c \circ \tilde i $$ Or in commutative diagram: $$ \require{AMScd} \begin{CD} R @>c>> {\text{Frac}{(F)}}\\ @. {\searrow} @VV {\tilde i} V\\ @.F \end{CD} $$ ::: Let $$ [(a, b)] \to i(a)i(b)^{-1} $$ Suppose that $[(a, b)] \sim [(a', b')]$, then $$ i(ab) $$ ### 推論: :::danger Let $R$ be a integral domain. Then every fields containing $R$ contains $\text{Frac}(R)$ :::